首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with type 1 diabetes are at a risk of hypertension. However, the mechanisms behind the findings are not completely known. The aim of the present study was to investigate involvement of interleukin-6 (IL-6) on the contraction of abdominal aorta in rats with type 1 diabetes. IL-6 levels in the plasma of rats with streptozotocin (STZ)-induced diabetes were determined by ELISA. The abdominal aorta was dissected free of fat and connective tissues and then cut into spiral rings. The endothelium-denuded strip was vertically suspended in tissue chambers containing 5 ml Krebs solution at 37 degrees C and bubbled continuously with 95% O2-5% CO2. The effects of phenylephrine (Phe) on the contractile responses of abdominal aorta were recorded. The effects of IL-6 and anti-rat IL-6 antibody on the Phe-induced response were also examined. Plasma levels of IL-6 increased time-dependently in rats with STZ-induced diabetes. Phe caused concentration-dependent contraction in aortic rings. Phe-induced contractions were higher in vascular strips of STZ-induced diabetic rats than that of control rats. Pretreatment of vascular strips with IL-6 for 1 h did not cause contraction but enhanced the contraction in response to Phe. Treatment of the vascular strips with an anti-IL-6 antibody for 1 h decreased the Phe-induced contractions. These results suggest that IL-6 causes vascular smooth muscle contraction in abdominal aorta of rats with type 1 diabetes.  相似文献   

2.
Selenium selenate was administered to streptozotocin-induced diabetic rats to assess its effects on the detrusor muscle. Thirty-two rats were divided into four groups of eight subjects each. The study animals were made diabetic by means of a single intravenous injection of streptozotocin (STZ). The responsiveness of the detrusor was improved in the group injected with sodium selenate. Diabetes caused significant increases in carbachol and β,γ-MeATP-evoked contractions and significant decrease of contractions induced by electrical stimulation. Isoprenaline-induced relaxation of the detrusor muscle was diminished by diabetes, whereas ATP relaxation appeared to be increased. Although adenosine-induced relaxations in controls and in diabetic rats were accompanied by unchanged responses in normoxic conditions, a significant enhancement in the detrusor muscle was observed during hypoxia. This enhancement of adenosine responsiveness in hypoxic conditions is inhibited in diabetes. Treatment with sodium selenate prevented alterations of both carbachol-induced contractility and isoprenaline-evoked relaxation, whereas nerve-mediated contractions and purinergic responses were not improved in diabetic rats after treatment. Our data suggest that changes in cholinergic and adrenergic responses were the result of selenium deficiency in diabetic rats.  相似文献   

3.
Uridine 5′-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats and control Long–Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) NG-nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y6 receptor.  相似文献   

4.
Botulinum toxin injection into the pylorus is reported to improve gastric emptying in gastroparesis. Classically, botulinum toxin inhibits ACh release from cholinergic nerves in skeletal muscle. The aim of this study was to determine the effects of botulinum toxin on pyloric smooth muscle. Guinea pig pyloric muscle strips were studied in vitro. Botulinum toxin type A was added; electric field stimulation (EFS) was performed every 30 min for 6 h. ACh (100 microM)-induced contractile responses were determined before and after 6 h. Botulinum toxin caused a concentration-dependent decrease of pyloric contractions to EFS. At a low concentration (2 U/ml), botulinum toxin decreased pyloric contractions to EFS by 43 +/- 9% without affecting ACh-induced contractions. At higher concentrations (10 U/ml), botulinum toxin decreased pyloric contraction to EFS by 75 +/- 7% and decreased ACh-induced contraction by 79 +/- 9%. In conclusion, botulinum toxin inhibits pyloric smooth muscle contractility. At a low concentration, botulinum toxin decreases EFS-induced contractile responses without affecting ACh-induced contractions suggesting inhibition of ACh release from cholinergic nerves. At higher concentrations, botulinum toxin directly inhibits smooth muscle contractility as evidenced by the decreased contractile response to ACh.  相似文献   

5.
We investigated the changes in arterial blood pressure (BP) and of mesenteric arterial bed (MAB) responsiveness that accompany streptozotocin (STZ)-induced diabetes. BP was recorded by radiotelemetry in conscious animals before and during a 4-week period following induction of the diabetic state with STZ. At the end of this period, the MAB was isolated and perfused under constant flow conditions: perfusion pressure (PP, mmHg) was taken as an index of arteriolar tone. BP was lower (P < 0.05) in STZ-treated diabetic rats (82.9+/-5.0 mmHg) than in vehicle-treated rats (108.9+/-6.3 mmHg). Basal perfusion pressure of the MAB was lower in STZ-treated rats than in control rats and inhibition of nitric oxide (NO) synthesis with N(G)-nitro-L-arginine-methyl-ester and N(G)-nitro-L-arginine (100 microM each) failed to change this relationship. Increases in PP of MAB to phenylephrine (Phe), norepinephrine (NE), and potassium chloride (KCl) were reduced in STZ-treated rats compared with control rats. Inhibition of NO synthesis reduced responses to Phe, NE, and KCL in both STZ and control rats. The reduced responsiveness of STZ rats to Phe, NE, and KCl persisted after inhibition of NO synthesis. Acetylcholine (ACh) evoked relaxation of the MAB in a dose-dependent fashion. Maximal responses to ACh, but not sodium nitroprusside, were lower in STZ rats than in vehicle treated rats. Inhibition of NO synthesis reduced responses to ACh in both STZ and control rats. The reduced responsiveness of STZ rats to ACh persisted after inhibition of NO synthesis. The data demonstrate that STZ-induced diabetes is associated with a fall in blood pressure when pressure is recorded with radiotelemetry. The fall in blood pressure may be related to a non-specific decrease in responsiveness to vasoconstrictor stimuli mediated at least in part by NO-independent mechanisms. A decrease in responsiveness to endothelial dependent vasodilator mechanisms appeared insufficient to restore responsiveness to vasoconstrictor stimuli.  相似文献   

6.
Oxidative stress is considered to be the main cause of diabetic complications. In the current study, we investigated the effect of selenium–vitamin E combination and melatonin on lipid peroxidation (LPO) and scavenging enzyme activity in the blood of streptozocin (STZ)-induced diabetic pregnant rats. Forty female Wistar rats were randomly divided into five groups. The first and second groups were used as the non-pregnant control and pregnant control groups, respectively. The third group was the pregnant diabetic group. Vitamin E plus selenium and melatonin were administered to the diabetic pregnant rats consisting fourth and fifth groups, respectively. Diabetes was induced on day 0 of the study by STZ. Blood samples were taken from all animals on the 20th day of pregnancy. LPO level was higher in diabetic pregnant rats than in control, although superoxide dismutase, catalase, and glutathione peroxidase activities were lower in diabetic pregnant animals than in control. LPO levels were lower both in the two treatment groups than in the diabetic pregnant rats, whereas selenium–vitamin E combination and melatonin caused a significant increase in the activities of these antioxidant enzymes (p < 0.01). In conclusion, vitamin E plus selenium seems to be a more potent antioxidant compared to melatonin in diabetic pregnant rats. Melatonin did not significantly affect the elevated glucose concentration of diabetic pregnant treated with melatonin group. Vitamin E plus selenium may play a role in preventing diabetes-related diseases of pregnant subjects.  相似文献   

7.
This study examined the effect of intracerebroventricular leptin on insulin sensitivity in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were cannulated in the lateral ventricle and, after recovery, administered either intravenous STZ (50 mg/kg) to induce diabetes or citrate buffer. Chronic leptin (10 microg/10 microl icv) or vehicle injections were administered daily for 14 days beginning 2 days after establishment of hyperglycemia in the diabetic animals. At the end of the 2 wk of injections, insulin sensitivity was measured by the steady-state plasma glucose (SSPG) method. Blood glucose concentrations were dramatically reduced and normalized by the 4th day in diabetic animals receiving intracerebroventricular leptin treatment. Diabetic animals exhibited insulin resistance, whereas intracerebroventricular leptin significantly enhanced insulin sensitivity, as indicated by decreased SSPG. Circulating leptin levels were not increased in animals injected with intracerebroventricular leptin. Thus the increased peripheral insulin sensitivity appears to be due solely to the presence of leptin in the brain, not to leptin acting peripherally. These data imply that inadequate central leptin signaling may lead to insulin resistance.  相似文献   

8.
Lung structural changes and immunoreactivity of endothelial (eNOS)- and inducible nitric oxide synthase (iNOS) were investigated by light microscopy in lungs of treated and untreated diabetic rats. Diabetes was induced by a single intraperitoneal (i.p.) injection of 65 mg kg(-1) streptozotocin (STZ) in Wistar albino male rats. Diabetic rats received daily i.p. doses of dexamethasone (2 mg kg(-1)), leptin (0.5 microg kg(-1)) and intramuscular insulin (20 U kg(-1)) or a combination of these drugs for 1 week starting 4 weeks after the STZ injections. After treatment, the blood levels of glucose, leptin, insulin and nitrate/nitrite (NO(3) (-)/NO(2) (-)) were measured. Dilatation of alveoli and alveolar ducts, partial alveolar wall thickening and increased eNOS- and iNOS characterized the diabetic rat lungs. High blood glucose and nitrate/nitrite levels as well as low insulin and leptin levels were also present. Treatment with insulin, dexamethasone and a combination of these drugs resulted in improvement of the structural and immunohistochemical abnormalities. The most effective treatment was insulin therapy. Leptin administration resulted in increased relative amounts of extracellular material, which led to noticeable respiratory efficiency in the diabetic rat lungs. All treatments except leptin lowered blood glucose levels. The combination of insulin and dexamethasone increased blood leptin and insulin, while the remaining diabetic rats had blood with low leptin and insulin concentrations. These results suggest that therapy with insulin plus dexamethasone but not therapy with leptin is beneficial for diabetics.  相似文献   

9.
We previously reported that in mesenteric arteries from streptozotocin (STZ)-induced diabetic rats that 1) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired, possibly due to a reduced action of cAMP via increased phosphodiesterase 3 (PDE3) activity (Matsumoto T, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 285: H283-H291, 2003) and that 2) PKA activity is decreased (Matsumoto T, Wakabayashi K, Kobayashi T, and Kamata K. Am J Physiol Heart Circ Physiol 287: H1064-H1071, 2004). Here we investigated whether chronic treatment with cilostazol, a PDE3 inhibitor, improves EDHF-type relaxation in mesenteric arteries isolated from STZ rats. We found that in such arteries 1) cilostazol treatment (2 wk) improved ACh-, A-23187-, and cyclopiazonic acid-induced EDHF-type relaxations; 2) the ACh-induced cAMP accumulation was transient and sustained in arteries from cilostazol-treated STZ rats; 3) the EDHF-type relaxation was significantly decreased by a PKA inhibitor in the cilostazol-treated group, but not in the cilostazol-untreated group; 4) cilostazol treatment improved both the relaxations induced by cAMP analogs and the PKA activity level; and 5) PKA catalytic subunit (Cat-alpha) protein was significantly decreased, but the regulatory subunit RII-beta was increased (and the latter effect was significantly decreased by cilostazol treatment). These results strongly suggest that cilostazol improves EDHF-type relaxations in STZ rats via an increase in cAMP and PKA signaling.  相似文献   

10.
Aims/hypothesis It is generally accepted that oxidative stress is responsible for etiology and complications of diabetes. During uncontrolled Type 1 diabetes, plasma leptin levels rapidly fall. However, it is not known whether diabetes-induced hypoleptinemia has any role in oxidative stress related to uncontrolled Type I diabetes. The present study was designed to examine the effects of leptin treatment on plasma lipid peroxidation and reduced glutathion of normal and streptozotocin(STZ)-induced diabetic rats. Methods Diabetes was induced by single injection of Streptozotocin (55 mg/kg bw). One week after induction of diabetes, rats began 5-day treatment protocol of leptin injections of (0.1 mg/kg bw i.p.) or same volume vehicle. At the end of the 5th day, rats were sacrificed by cardiac puncture under anesthesia and their plasma was taken for plasma leptin, malondialdehyde, and reduced glutathione measurements. Results Plasma leptin levels decreased in STZ-induced diabetic rats while plasma glucose, TBARS, and GSH levels increased. Plasma leptin levels were not affected with leptin treatment in both diabetic and non-diabetic rats. The elevation in plasma TBARS associated with STZ diabetes decreased with leptin treatment. Leptin also increased plasma GSH levels in diabetic rats. In non-diabetic rats, treatment with leptin did not change plasma TBARS and GSH levels. Conclusions/interpretations In conclusion, leptin treatment is able to attenuate lipid peroxidation in STZ-diabetic rats, in the onset of diabetes, by increasing the GSH levels without affecting hyperglycemia and hypoleptinemia.  相似文献   

11.
Muraki K  Watanabe M  Imaizumi Y 《Life sciences》2000,67(26):3163-3170
Effects of nifedipine (Nif) and nisoldipine (Nis), dihydropyridine Ca2+ channel blockers (DHPs) on membrane potential and currents of endothelial cells, which are enzymatically dispersed (dis-ECs) from or exist in arterial segments (seg-ECs) of rabbit and rat aorta, were examined. Outward currents induced by 1-10 microM acetylcholine (ACh) in dis-ECs were neither affected by a receptor operated Ca2+ channel blocker, SK&F 96365 (SKF), nor DHPs. ACh hyperpolarized dis-ECs and seg-ECs by 15-20 mV, whereas phenylephrine (Phe) elicited oscillatory depolarization in seg-ECs but not in dis-ECs. The Phe-induced response in seg-ECs was significantly inhibited by treatment with 18beta-glycyrrhetinic acid, a disrupter of gap junctions. Application of 0.3 microM Nif or Nis effectively inhibited the Phe-induced oscillatory depolarization, while these DHPs did not affect ACh-induced hyperpolarization in seg-ECs. The lack of effect on dis-ECs indicates that DHPs have little effect on dis-ECs themselves, nevertheless DHPs inhibit the Phe-induced endothelial potential oscillation which is conducted from smooth muscle cells via a myo-endothelial pathway.  相似文献   

12.
In isolated superior mesenteric artery rings from age-matched control rats and streptozotocin (STZ)-induced diabetic rats, we investigated the role of cAMP in endothelium-derived hyperpolarizing factor (EDHF)-type relaxation. The ACh-induced EDHF-type relaxation was significantly weaker in STZ-induced diabetic rats than in control rats, and in both groups of rats it was attenuated by 18alpha-glycyrrhetinic acid (18alpha-GA), an inhibitor of gap junctions, and enhanced by IBMX, a cAMP-phosphodiesterase (PDE) inhibitor. These enhanced EDHF-type responses were very similar in magnitude between diabetic and age-matched control rats. The EDHF-type relaxation was enhanced by cilostamide, a PDE3-selective inhibitor, but not by Ro 20-1724, a PDE4-selective inhibitor. The expression levels of the mRNAs and proteins for two cAMP PDEs (PDE3A, PDE3B) were significantly increased in STZ-induced diabetic rats, but those for PDE4D were not. We conclude that the impairment of EDHF-type relaxations in STZ-induced diabetic rats may be attributed to a reduction in the action of cAMP via increased PDE activity.  相似文献   

13.
The effects of hydrogen peroxide (H2O2, 1 nM-5 mM) on the tone of the rings of aorta precontracted with phenylephrine (PE) were studied in 4-5 months streptozotocin (STZ)-diabetic rats and their age-matched controls. H2O2 induced brief contraction before relaxation in endothelium-containing rings that was more pronounced in diabetic rats. Removal of the endothelium or pretreatment of rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM) abolished H2O2-induced immediate and transient increase in tone, but preincubation with indomethacin (10 microM) had no effect on contractions induced by H2O2 in both group of animals. Pretreatment with L-NAME or indomethacin as well as absence of endothelium produced an inhibition of H2O2-induced relaxation that was more pronounced in diabetic rings. Chronically STZ-diabetes resulted in a significant increase in H2O2-induced maximum relaxation that was largely endothelium-dependent. Decreased sensitivity (pD2) of diabetic vessels to vasorelaxant action of H2O2 was normalized by superoxide dismutase (SOD, 80 U/ml). Pretreatment with SOD had no effect on H2O2-induced maximum relaxations in both group of animals but led to an increase in H2O2-induced contractions in control rats. When the rings pretreated with diethyldithiocarbamate (DETCA, 5 mM), H2O2 produced only contraction in control rats, and H2O2-induced relaxations were markedly depressed in diabetic rats. H2O2 did not affect the tone of intact or endothelium-denuded rings in the presence of catalase (2000 U/ml). Aminotriazole (AT, 10 mM) failed to affect H2O2-induced contractions or relaxations in all rings. Our observations suggest that increased production of oxygen-derived free radicals (OFRs) in diabetic state leads to a decrease in SOD activity resulting an increase in endogenous superoxide anions (O2*-), that is limited cytotoxic actions, and an increase in catalase activity resulting a decrease in both H2O2 concentrations and the production of harmful hydroxyl radical (*OH) in diabetic aorta in long-term. Present results indicate that increased vascular activity of H2O2 may be an important factor in the development of vascular disorders associated with chronically diabetes mellitus. Enhanced formation of *OH, that is a product of exogenous H2O2 and excess O2*, seems to be contribute to increased relaxations to exogenously added H2O2 in chronically diabetic vessels.  相似文献   

14.
Adeno-associated virus vector plasmid carrying the expression cassette of brain-derived neurotrophic factor (BDNF), pAAV-BDNF, was constructed and packaged into recombinant adeno-associated virus (rAAV-BDNF). The rAAV-BDNF was intravitreally injected into streptzotocin (STZ)-induced diabetic Sprague–Dawley (SD) Rats. Data showed that over-expression of BDNF could increase alive retinal ganglion cell (RGC) number and improve its function in streptzotocin(STZ)-induced diabetic rats, which might be a new method to treat diabetic neuropathy and retinopathy.  相似文献   

15.
Adenosine can show anti-inflammatory as well as pro-inflammatory activities. The contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. In this study, we examined the effect of the adenosine A2A receptor agonist CGS 21680 and the A2BR antagonist PSB-1115 on acute inflammation induced experimentally by 2,4,6-trinitrobenzenesulfonic acid (TNBS) on rat ileum/jejunum preparations. Pre-incubation of the ileum/jejunum segments with TNBS for 30 min resulted in a concentration-dependent inhibition of acetylcholine (ACh)-induced contractions. Pharmacological activation of the A2AR with CGS 21680 (0.1–10 μM) pre-incubated simultaneously with TNBS (10 mM) prevented concentration-dependently the TNBS-induced inhibition of the ACh contractions. Stimulation of A2BR with the selective agonist BAY 60-6583 (10 μM) did neither result in an increase nor in a further decrease of ACh-induced contractions compared to the TNBS-induced inhibition. The simultaneous pre-incubation of the ileum/jejunum segments with TNBS (10 mM) and the selective A2BR antagonist PSB-1115 (100 μM) inhibited the contraction-decreasing effect of TNBS. The effects of the A2AR agonist and the A2BR antagonist were in the same range as the effect induced by 1 μM methotrexate. The combination of the A2AR agonist CGS 21680 and the A2BR antagonist PSB-1115 at subthreshold concentrations of both agents found a significant amelioration of the TNBS-diminished contractility. Our results demonstrate that the activation of A2A receptors or the blockade of the A2B receptors can prevent the inflammation-induced disturbance of the ACh-induced contraction in TNBS pre-treated small intestinal preparations. The combination of both may be useful for the treatment of inflammatory bowel diseases.  相似文献   

16.
Both, diabetes mellitus (DM) and hypercholesterolemia (HCH) are known as risk factors of ischemic heart disease, however, the effects of experimental DM, as well as of HCH alone, on ischemia/reperfusion-induced myocardial injury are not unequivocal. We have previously demonstrated an enhanced resistance to ischemia-induced arrhythmias in rat hearts in the acute phase of DM. Our objectives were thus to extend our knowledge on how DM in combination with HCH, a model that is relevant to diabetic patients with altered lipid metabolism, may affect the size of myocardial infarction and susceptibility to arrhythmias. A combination of streptozotocin (STZ; 80 mg/kg, i.p.) and the fat–cholesterol diet (1% cholesterol, 1% coconut oil; FCHD) was used as a double-disease model mimicking DM and HCH simultaneosly occurring in humans. Following 5 days after STZ injection and FCHD leading to increased blood glucose and cholesterol levels, anesthetized open-chest diabetic, diabetic–hypercholesterolemic (DM–HCH) and age-matched control rats were subjected to 6-min ischemia (occlusion of LAD coronary artery) followed by 10 reperfusion to test susceptibility to ventricular arrhythmias in the in vivo experiments and to 30-min ischemia and subsequent 2-h reperfusion for the evaluation of the infarct size (IS) in the Langendorff-perfused hearts. The incidence of the most life-threatening ventricular arrhythmia, ventricular fibrillation, was significantly increased in the DM–HCH rats as compared with non-diabetic control animals (100% vs. 50%; p<0.05). Likewise, arrhythmia severity score (AS) was significantly higher in the DM–HCH rats than in the controls (4.9±0.2 vs. 3.5±0.5; p<0.05), but was not increased in the diabetic animals (AS 3.7±0.9; p>0.05 vs. controls). Diabetic hearts exhibited a reduced IS (15.1±3.0% of the area at risk vs. 37.6±2.8% in the control hearts; p<0.05), however, a combination of DM and HCH increased the size of myocardial infarction to that observed in the controls. In conclusion, HCH abrogates enhanced resistance to ischemia-reperfusion injury in the diabetic rat heart.  相似文献   

17.
We used the partial protection exerted by suitable dosages of nicotinamide against the beta-cytotoxic effect of streptozotocin (STZ) to create an experimental diabetic syndrome in adult rats that appears closer to type II diabetes mellitus than other available animal models. The dosage of 230 mg/kg of nicotinamide given intraperitoneally 15 min before STZ administration (65 mg/kg i.v.) yielded animals with hyperglycemia (187.8 +/- 17.8 vs. 103.8 +/- 2.8 mg/dL in controls; P < 0.001) and preservation of plasma insulin levels. This study assessed the relationship between endothelial dysfunction and agonist-induced contractile responses in such rats. In the thoracic aorta, the acetylcholine (ACh) induced relaxation was significantly reduced and the noradrenaline (NA) induced contractile response was significantly increased in diabetic rats compared with age-matched control rats. In the superior mesenteric artery, the ACh-induced relaxation was similar in magnitude between diabetic and age-matched control rats; however, the ACh-induced endothelium-derived hyperpolarizing factor (EDHF) type relaxation was significantly weaker in diabetic rats than in the controls. The phenylephrine (PE) induced contractile response was not different between the two groups. The plasma concentration of NOx (NO2- + NO3-) was significantly lower in diabetic rats than in control rats. We conclude that vasomotor activities in conduit arteries are impaired in this type II diabetes model.  相似文献   

18.
The hypoglycemic effect of the crude extracellular polysaccharides (EPS) produced from submerged mycelial culture of an edible mushroom Laetiporus sulphureus var. miniatus in streptozotocin (STZ)-induced diabetic rat was investigated. Hypoglycemic effect of EPS was evaluated in STZ-induced diabetic rats, and its possible mechanism was suggested by the results of western blot analysis and immunohistochemical staining. The results revealed that orally administrated EPS, when given 48 h after STZ treatment exhibited an excellent hypoglycemic effect, lowering the average plasma glucose level in EPS-fed rats to 43.5% of STZ-treated rats. The plasma levels of total cholesterol and triglyceride were significantly increased upon STZ treatment and they were markedly reduced by oral administration of EPS to near-normal levels. The results of immunohistochemical staining of the pancreatic tissues showed that EPS treatment considerably increased the insulin antigenesity of diabetic islet β-cells, suggesting the possibility of β-cell proliferation or regeneration by EPS therapy. Moreover, immunoblotting study revealed that protein levels of iNOS was increased and SOD2, catalase, GPx were significantly increased after EPS treatments, suggesting alleviated oxidative stress mediated by STZ. Orally administrated EPS exhibited considerable hypoglycemic effect in STZ-induced diabetic rats and that these EPS may be useful for the management of diabetes mellitus.  相似文献   

19.
In this study, we tested the hypothesis that spontaneously diabetic TallyHo (TH) mice, a novel polygenic model for type 2 diabetes, will exhibit endothelial dysfunction associated with an increased contribution from endothelium-derived contractile factors (EDCF). The cellular mechanisms underlying the increased contribution of EDCF were explored in 16 and 30-week-old male TH and age-matched male C57BL/6J mice (n=4-9). Blood glucose and serum lipid profiles were markedly increased in the TH mice. Superoxide generation, assessed with a lucigenin chemiluminescence assay, was markedly increased in the aortae of TH mice. Endothelium-dependent vascular relaxations and contractions to acetylcholine (ACh), but not endothelium-independent relaxations to sodium nitroprusside, were impaired and vascular contractions to phenylephrine were significantly enhanced in aortae from TH mice. Nomega-nitro-L-arginine methyl ester markedly increased the ACh-induced contractions in TH mice, whereas SQ29548, a thromboxane receptor antagonist, and cytochrome P450 (CYP) inhibitors 17-octadecynoic acid and sulfaphenazole, the latter being specific for CYP2C6 and 2C9, decreased and (or) normalized the contractile response to ACh in TH mice. The present study indicates that enhanced contribution of prostaglandin H2/thromboxane A2 receptor and CYP, likely CYP2C6 and 2C9, play a critical role in the pathogenesis of increased EDCF in the aortae of type 2 diabetic TH mice.  相似文献   

20.
High blood glucose concentration in diabetes induces free radical production and, thus, causes oxidative stress. Damage of cellular structures by free radicals play an important role in development of diabetic complications. In this study, we evaluated effects of sodium tungstate on enzymatic and nonenzymatic markers of oxidative stress in brain of streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups (ten rats in each group): untreated control, sodium tungstate-treated control, untreated diabetic, and sodium tungstate-treated diabetic. Diabetes was induced with an intraperitoneal STZ injection (65 mg/kg body weight), and sodium tungstate with concentration of 2 g/L was added to drinking water of treated animals for 4 weeks. Diabetes caused a significant increase in the brain thiobarbituric acid reactive substances (P < 0.01) and protein carbonyl levels (P < 0.01) and a decrease in ferric reducing antioxidant power (P < 0.01). Moreover, diabetic rats presented a reduction in brain glucose-6-phosphate dehydrogenase (21%), superoxide dismutase (41%), glutathione peroxidase (19%), and glutathione reductase (36%) activities. Sodium tungstate reduced the hyperglycemia and restored the diabetes-induced changes in all mentioned markers of oxidative stress. However, catalase activity was not significantly affected by diabetes (P = 0.4), while sodium tungstate caused a significant increase in enzyme activity of treated animals (P < 0.05). Data of present study indicated that sodium tungstate can ameliorate brain oxidative stress in STZ-induced diabetic rats, probably by reducing of the high glucose-induced oxidative stress and/or increasing of the antioxidant defense mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号