首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S Y Le  J H Chen  N Sonenberg    J V Maizel  Jr 《Nucleic acids research》1993,21(10):2445-2451
Statistical analyses of RNA folding in 5' nontranslated regions (5'NTR) of encephalomyocarditis virus, Theiler's murine encephalomyelitis virus, foot-and-mouth disease virus, and hepatitis A virus indicate that two highly significant folding regions occur in the 5' and 3' portions of the 5'NTR. The conserved tertiary structural elements are predicted in the unusual folding regions (UFR) for these viral RNAs. The theoretical, common structural elements predicted in the 3' parts of the 5'NTR occur in a cis-acting element that is critical for internal ribosome binding. These structural motifs are expected to be highly significant from extensive Monte Carlo simulations. Nucleotides (nt) in the conserved single-stranded polypyrimidine tract for these RNAs are involved in a distinctively tertiary interaction that is located at about 15 nt prior to the initiator AUG. Intriguingly, the proposed common tertiary structure in this study shares a similar structural feature to that proposed in human enteroviruses and rhinoviruses. Based on these common structural features, plausible base pairing models between these viral RNAs and 18 S rRNA are suggested, which are consistent with a general mechanism for regulation of internal initiation of cap-independent translation.  相似文献   

2.
An analysis of reported nucleotide sequences revealed several cases of gross rearrangements in the 5'-untranslated region (5-UTR) of picornaviral genomes. A large (greater than 100 nt) duplication was discovered in a downstream region of poliovirus 5-UTR involved in the translational control. Properties of the poliovirus mutants with large deletions [Kuge and Nomoto (1987) J. Virol. 61, 1478-1487] show that a single copy of the appropriate repeating unit is compatible with a wild type phenotype of the virus. In contrast to poliovirus and another enterovirus genomes, human rhinovirus RNAs contain only a single copy of this repeating unit. Another similarly large repeat was found in an upstream segment of the bovine enterovirus 5-UTR. A comparison of the primary and secondary structures of cardio- and aphthovirus 5-UTRs demonstrated the existence of a large (ca. 250 nucleotides) insertion/deletion in a region preceding the poly(C) tract. The two latter rearrangements appear to involve elements of the viral genome replication machinery. Possible origin as well as evolutionary and functional implications of these structural peculiarities are discussed.  相似文献   

3.
4.
5.
The collection of known 5 S rRNA primary structures is enriched with the sequences from three mollusca, the snails Helix pomatia and Arion rufus, and the mussel Mytilus edulis. The three sequences can be fitted in a five-helix secondary structure model previously shown (De Wachter et al. (1982) Biochimie 64, 311-329) to apply to all 5 S RNAs regardless of their origin. One of the helices in this model can undergo a bulge-internal loop transition. Within the metazoan kingdom, the dimensions of each helix and loop are rigidly conserved, except for one helix which can comprise either 6 or 7 base pairs.  相似文献   

6.
7.
Deleterious mutation prediction in the secondary structure of RNAs   总被引:1,自引:0,他引:1       下载免费PDF全文
Barash D 《Nucleic acids research》2003,31(22):6578-6584
  相似文献   

8.
9.
In vitro selection experiments have been used to isolate active variants of the 50 nt hairpin catalytic RNA motif following randomization of individual ribozyme domains and intensive mutagenesis of the ribozyme-substrate complex. Active and inactive variants were characterized by sequencing, analysis of RNA cleavage activity in cis and in trans, and by substrate binding studies. Results precisely define base-pairing requirements for ribozyme helices 3 and 4, and identify eight essential nucleotides (G8, A9, A10, G21, A22, A23, A24 and C25) within the catalytic core of the ribozyme. Activity and substrate binding assays show that point mutations at these eight sites eliminate cleavage activity but do not significantly decrease substrate binding, demonstrating that these bases contribute to catalytic function. The mutation U39C has been isolated from different selection experiments as a second-site suppressor of the down mutants G21U and A43G. Assays of the U39C mutation in the wild-type ribozyme and in a variety of mutant backgrounds show that this variant is a general up mutation. Results from selection experiments involving populations totaling more than 10(10) variants are summarized, and consensus sequences including 16 essential nucleotides and a secondary structure model of four short helices, encompassing 18 bp for the ribozyme-substrate complex are derived.  相似文献   

10.
11.
A triple tandem repeat (TTR) consisting of 90 nucleotides exists immediately upstream of the ATG initiator codon in human thymidylate synthase (TS) cDNA (pcHTS-1). To investigate the role of the TTR in the expression of the TS cDNA, we used pcHTS-1 to construct mutant cDNA clones in which part of the TTR was deleted or an additional element was inserted. The mutant cDNA plasmid was introduced into murine TS-negative mutant cells and the relative translation efficiencies of the mutant cDNAs were determined by measuring the transient expression of TS activity and the amount of TS mRNA transcribed. The translation efficiency in transient expression of the mutants was increased by deletions covering all the first two repeated elements, and the part of the third closest to the ATG initiator codon, but was not affected by deletions of only parts of the first two repeated elements at the 5' end. The translation efficiency was also not affected by insertion of an additional repeated element into the TTR. These results suggest that the first two repeated elements at the 5' end both have inhibitory effects on translation of the TS mRNA, probably due to the unique structural feature of this element.  相似文献   

12.
S Wang  K S Browning    W A Miller 《The EMBO journal》1997,16(13):4107-4116
For recognition by the translational machinery, most eukaryotic cellular mRNAs have a 5' cap structure [e.g. m7G(5')ppp(5')N]. We describe a translation enhancer sequence (3'TE) located in the 3'-untranslated region (UTR) of the genome of the PAV barley yellow dwarf virus (BYDV-PAV) which stimulates translation from uncapped mRNA by 30- to 100-fold in vitro and in vivo to a level equal to that of efficient capped mRNAs. A four base duplication within the 3'TE destroyed the stimulatory activity. Efficient translation was recovered by addition of a 5' cap to this mRNA. Translation of both uncapped mRNA containing the 3'TE in cis and capped mRNA lacking any BYDV-PAV sequence was inhibited specifically by added 3'TE RNA in trans. This inhibition was reversed by adding initiation factor 4F (eIF4F), suggesting that the 3'TE, like the 5' cap, mediates eIF4F-dependent translation initiation. The BYDV-PAV 5'UTR was necessary for the 3'TE to function, except when the 3'TE itself was moved to the 5'UTR. Thus, the 3'TE is sufficient for recruiting the translation factors and ribosomes, while the viral 5'UTR may serve only for the long distance 3'-5' communication. Models are proposed to explain this novel mechanism of cap-independent translation initiation facilitated by the 3'UTR.  相似文献   

13.
A method of graduating (i.e., least-squares fitting) a smooth polynomial curve through long elements of protein secondary structure is described. It uses the Chebyshev polynomials of a discrete (integer) variable with several restraints to prevent artifactual curvatures. A new recursion formula is given which allows the evaluation of the polynomials on rational-number points as well as on the integer points. High-order splines suitable for interpolation between integer points are also discussed. The new method finds applications in graphics and in structural analysis.  相似文献   

14.
15.
The secondary structures of the 5'-untranslated region (5'-UTR) of five different tymoviruses have been determined by structure probing, computer prediction and sequence comparison. Despite large sequence differences, there are remarkable similarities in the secondary structure. In all viruses two or four hairpins are found, most of which contain a symmetrical internal loop consisting of adjacent C-C or C-A mismatches. Since it is known that such mismatches can be protonated and protonated cytosines play an important role in RNA-protein interactions in tymoviral virions, the influence of pH on the conformation of the internal loop was studied. UV melting experiments and 1-dimensional proton NMR at varying pH values and salt concentrations confirm that the hairpins can be protonated under relatively mild conditions. The hairpin found in the 5'-UTR of erysimum latent virus, which has an asymmetrical internal loop consisting of cytosines and uridines, shows comparable behaviour. It is concluded that all tymoviral RNAs contain protonatable hairpins in the 5'-UTR. Binding experiments with empty viral capsids, however, do not yet establish a role in capsid protein binding.  相似文献   

16.
17.
The kinetics of regain of 2′-CMP binding are monitored during renaturation of RNAase S. Experiments were performed by mixing equimolar amounts of S-peptide with S-protein. The S-protein fragment was incubated initially (i.e. before mixing with S-peptide) at pH 6.2 or 1.7 and various guanidine hydrochloride (GuHCl) concentrations. Three well-resolved phases are observed. The fastest phase is second-order. The reciprocal half-time increases linearly with fragment concentration and is independent of initial conditions for the S-protein fragment. An apparent on rate of kon = 2 × 105m?1s?1 is measured in 0.5 m-GuHCl (pH 6.2) and 20 ° C. Identical association kinetics are observed by changes in tyrosine absorbance. The fraction of native RNAase S formed in this second-order reaction strictly equals the fraction of S-protein molecules with intact β-sheet in initial conditions. The relation holds for different pH values, GuHCl concentrations and temperatures. The fraction of apparent helical content of S-protein in initial conditions may also vary but this is not reflected by the association reaction. We interpret this to mean that the β-sheet but not the α-helices must be preformed in initial conditions in order to generate the high-affinity peptide binding site of S-protein. Furthermore, it is concluded that the S-protein moiety β-sheet forms or unfolds in a single one-step reaction. 2′-CMP binding reports, additionally, two slower phases of renaturation. These are produced by S-protein molecules that have their β-sheet unfolded in initial conditions. It is observed that a unique dependence of these two folding rates exists for RNAase A, RNAase S and S-protein as function of tm, the temperature of half-completion of thermal denaturation as measured by unfolding of the β-sheet in the respective compound in final conditions. The tm value varies with changing pH, with GuHCl concentration and (for RNAase S) with changing fragment concentration. The findings are interpreted to argue in favor of a sequential mechanism of folding, where the stability of a structural precursor determines the rate of folding.  相似文献   

18.
Evolution of secondary structure in the family of 7SL-like RNAs   总被引:8,自引:0,他引:8  
Primate and rodent genomes are populated with hundreds of thousands copies of Alu and B1 elements dispersed by retroposition, i.e., by genomic reintegration of their reverse transcribed RNAs. These, as well as primate BC200 and rodent 4.5S RNAs, are ancestrally related to the terminal portions of 7SL RNA sequence. The secondary structure of 7SL RNA (an integral component of the signal recognition particle) is conserved from prokaryotes to distant eukaryotic species. Yet only in primates and rodents did this molecule give rise to retroposing Alu and B1 RNAs and to apparently functional BC200 and 4.5S RNAs. To understand this transition and the underlying molecular events, we examined, by comparative analysis, the evolution of RNA structure in this family of molecules derived from 7SL RNA.RNA sequences of different simian (mostly human) and prosimian Alu subfamilies as well as rodent B1 repeats were derived from their genomic consensus sequences taken from the literature and our unpublished results (prosimian and New World Monkey). RNA secondary structures were determined by enzymatic studies (new data on 4.5S RNA are presented) and/or energy minimization analyses followed by phylogenetic comparison. Although, with the exception of 4.5S RNA, all 7SL-derived RNA species maintain the cruciform structure of their progenitor, the details of 7SL RNA folding domains are modified to a different extent in various RNA groups. Novel motifs found in retropositionally active RNAs are conserved among Alu and B1 subfamilies in different genomes. In RNAs that do not proliferate by retroposition these motifs are modified further. This indicates structural adaptation of 7SL-like RNA molecules to novel functions, presumably mediated by specific interactions with proteins; these functions were either useful for the host or served the selfish propagation of RNA templates within the host genome.Abbreviations FAM fossil Alu element - FLAM free left Alu monomer - FRAM free right Alu monomer - L-Alu left Alu subunit - R-Alu right Alu subunit Correspondence to: D. LabudaDedicated to Dr. Robert Cedergren on the occasion of his 25th anniversary at the University of Montreal  相似文献   

19.
Y RNAs are small 'cytoplasmic' RNAs which are components of the Ro ribonucleoprotein (RNP) complex. The core of this complex, which is found in the cell nuclei of higher eukaryotes as well as the cytoplasm, is composed of a complex between the 60 kDa Ro protein and Y RNAs. Human cells contain four distinct Y RNAs (Y1, Y3, Y4 and Y5), while other eukaryotes contain a variable number of Y RNA homologues. When detected in a particular species, the Ro RNP has been present in every cell type within that particular organism. This characteristic, along with its high conservation among vertebrates, suggests an important function for Ro RNP in cellular metabolism; however, this function has not yet been definitively elucidated. In order to identify conserved features of Y RNA sequences and structures which may be directly involved in Ro RNP function, a phylogenetic comparative analysis of Y RNAs has been performed. Sequences of Y RNA homologues from five vertebrate species have been obtained and, together with previously published Y RNA sequences, used to predict Y RNA secondary structures. A novel RNA secondary structure comparison algorithm, the suboptimal RNA analysis program, has been developed and used in conjunction with available algorithms to find phylogenetically conserved secondary structure models for YI, Y3 and Y4 RNAs. Short, conserved sequences within the Y RNAs have been identified and are invariant among vertebrates, consistent with a direct role for Y RNAs in Ro function. A subset of these are located wholly or partially in looped regions in the Y3 and Y4 RNA predicted model structures, in accord with the possibility that these Y RNAs base pair with other cellular nucleic acids or are sites of interaction between the Ro RNP and other macromolecules.  相似文献   

20.
We have studied the accessibility of 5'- 32P labeled oocyte and somatic 5S rRNAs from the fish Misgurnus fossilis L. to S1, T1 and cobra venom nucleases and have found that the cleavage sites of 5S rRNAs closely related in primary structures differ in these molecules. The data of nuclease hydrolyses revealed the existence of two conformers corresponding to renatured and partially denatured somatic 5S rRNA and capable of mutual interconversions. The exposed cytosine residues were located in oocyte and somatic 5S rRNAs converted into uridine ones by sodium bisulfite treatment. The data have been used to construct the secondary structure models of somatic and oocyte 5S rRNAs by means of specially devised computer program. These models differ in their 5'-halves which contain all the nucleotide substitutions in the primary structure, all differences in location of the exposed cytosine residues, and finally, in the cleavage pattern by the nucleases used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号