首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Targeting of the minus-end directed microtubule motor cytoplasmic dynein to a wide array of intracellular substrates appears to be mediated by an accessory factor known as dynactin [1-4]. Dynactin is a multi-subunit complex that contains a short actin-related protein 1 (Arp 1) filament with capZ at the barbed end and p62 at the pointed end [5]. The location of the p62 subunit and the proposed role for dynactin as a multifunctional targeting complex raise the possibility of a dual role for p62 in dynein targeting and in Arp1 pointed-end capping. In order to gain further insight into the role of p62 in dynactin function, we have cloned cDNAs that encode two full-length isoforms of the protein from rat brain. We found that p62 is homologous to the nuclear migration protein Ropy-2 from Neurospora [6]; both proteins contain a zinc-binding motif that resembles the LIM domain of several other cytoskeletal proteins [7]. Overexpression of p62 in cultured mammalian cells revealed colocalization with cortical actin, stress fibers, and focal adhesion sites, sites of potential interaction between microtubules and the cell cortex [8,9]. The p62 protein also colocalized with polymers of overexpressed wild-type or barbed-end-mutant Arp1, but not with a pointed-end mutant. Deletion of the LIM domain abolished targeting of p62 to focal-adhesion sites but did not interfere with binding of p62 to actin or Arp1. These data implicate p62 in Arp1 pointed-end binding and suggest additional roles in linking dynein and dynactin to the cortical cytoskeleton.  相似文献   

2.
The multisubunit protein, dynactin, is a critical component of the cytoplasmic dynein motor machinery. Dynactin contains two distinct structural domains: a projecting sidearm that interacts with dynein and an actin-like minifilament backbone that is thought to bind cargo. Here, we use biochemical, ultrastructural, and molecular cloning techniques to obtain a comprehensive picture of dynactin composition and structure. Treatment of purified dynactin with recombinant dynamitin yields two assemblies: the actin-related protein, Arp1, minifilament and the p150(Glued) sidearm. Both contain dynamitin. Treatment of dynactin with the chaotropic salt, potassium iodide, completely depolymerizes the Arp1 minifilament to reveal multiple protein complexes that contain the remaining dynactin subunits. The shoulder/sidearm complex contains p150(Glued), dynamitin, and p24 subunits and is ultrastructurally similar to dynactin's flexible projecting sidearm. The dynactin shoulder complex, which contains dynamitin and p24, is an elongated, flexible assembly that may link the shoulder/sidearm complex to the Arp1 minifilament. Pointed-end complex contains p62, p27, and p25 subunits, plus a novel actin-related protein, Arp11. p62, p27, and p25 contain predicted cargo-binding motifs, while the Arp11 sequence suggests a pointed-end capping activity. These isolated dynactin subdomains will be useful tools for further analysis of dynactin assembly and function.  相似文献   

3.
Dynactin is an essential part of the cytoplasmic dynein motor that enhances motor processivity and serves as an adaptor that allows dynein to bind cargoes. Much is known about dynactin''s interaction with dynein and microtubules, but how it associates with its diverse complement of subcellular binding partners remains mysterious. It has been suggested that cargo specification involves a group of subunits referred to as the “pointed-end complex.” We used chemical cross-linking, RNA interference, and protein overexpression to characterize interactions within the pointed-end complex and explore how it contributes to dynactin''s interactions with endomembranes. The Arp11 subunit, which caps one end of dynactin''s Arp1 filament, and p62, which binds Arp11 and Arp1, are necessary for dynactin stability. These subunits also allow dynactin to bind the nuclear envelope prior to mitosis. p27 and p25, by contrast, are peripheral components that can be removed without any obvious impact on dynactin integrity. Dynactin lacking these subunits shows reduced membrane binding. Depletion of p27 and p25 results in impaired early and recycling endosome movement, but late endosome movement is unaffected, and mitotic spindles appear normal. We conclude that the pointed-end complex is a bipartite structural domain that stabilizes dynactin and supports its binding to different subcellular structures.  相似文献   

4.
Dynactin is a multisubunit complex that regulates the activities of cytoplasmic dynein, a microtubule-associated motor. Actin-related protein 1 (Arp1) is the most abundant subunit of dynactin, and it forms a short filament to which additional subunits associate. An Arp1 filament pointed-end--binding subcomplex has been identified that consists of p62, p25, p27, and Arp11 subunits. The functional roles of these subunits have not been determined. Recently, we reported the cloning of an apparent homologue of mammalian Arp11 from the filamentous fungus Neurospora crassa. Here, we report that N. crassa ro-2 and ro-12 genes encode the respective p62 and p25 subunits of the pointed-end complex. Characterization of Delta ro-2, Delta ro-7, and Delta ro-12 mutants reveals that each has a distinct phenotype. All three mutants have reduced in vivo vesicle trafficking and have defects in vacuole distribution. We showed previously that in vivo dynactin function is required for high-level dynein ATPase activity, and we find that all three mutants have low dynein ATPase activity. Surprisingly, Delta ro-12 differs from Delta ro-2 and Delta ro-7 and other previously characterized dynein/dynactin mutants in that it has normal nuclear distribution. Each of the mutants shows a distinct dynein/dynactin localization pattern. All three mutants also show stronger dynein/dynactin-membrane interaction relative to wild type, suggesting that the Arp1 pointed-end complex may regulate interaction of dynactin with membranous cargoes.  相似文献   

5.
The dynactin complex contains proteins including p150 that interacts with cytoplasmic dynein and an actin-related protein Arp1 that forms a minifilament. Proteins including Arp11 and p62 locate at the pointed end of the Arp1 filament, but their biochemical functions are unclear (Schroer TA. Dynactin. Annu Rev Cell Dev Biol 2004;20:759–779). In Aspergillus nidulans , loss of Arp11 or p62 causes the same nu clear d istribution (nud) defect displayed by dynein mutants, indicating that these pointed-end proteins are essential for dynein function. We constructed a strain with S-tagged p150 of dynactin that allows us to pull down components of the dynactin and dynein complexes. Surprisingly, while the ratio of pulled-down Arp1 to S-p150 in Arp11-depleted cells is clearly lower than that in wild-type cells, the ratio of pulled-down dynein to S-p150 is significantly higher. We further show that the enhanced dynein–dynactin interaction in Arp11-depleted cells is also present in the soluble fraction and therefore is not dependent upon the affinity of these proteins to the membrane. We suggest that loss of the pointed-end proteins alters the Arp1 filament in a way that affects the conformation of p150 required for its proper interaction with the dynein motor.  相似文献   

6.
Dynactin is a multiprotein complex that works with cytoplasmic dynein and other motors to support a wide range of cell functions. It serves as an adaptor that binds both dynein and cargoes and enhances single-motor processivity. The dynactin subunit dynamitin (also known as p50) is believed to be integral to dynactin structure because free dynamitin displaces the dynein-binding p150Glued subunit from the cargo-binding Arp1 filament. We show here that the intrinsically disordered dynamitin N-terminus binds to Arp1 directly. When expressed in cells, dynamitin amino acids (AA) 1–87 causes complete release of endogenous dynamitin, p150, and p24 from dynactin, leaving behind Arp1 filaments carrying the remaining dynactin subunits (CapZ, p62, Arp11, p27, and p25). Tandem-affinity purification–tagged dynamitin AA 1–87 binds the Arp filament specifically, and binding studies with purified native Arp1 reveal that this fragment binds Arp1 directly. Neither CapZ nor the p27/p25 dimer contributes to interactions between dynamitin and the Arp filament. This work demonstrates for the first time that Arp1 can directly bind any protein besides another Arp and provides important new insight into the underpinnings of dynactin structure.  相似文献   

7.
The Arp2/3 complex is a conserved seven-subunit actin-nucleating machine activated by WASp (Wiskott Aldrich syndrome protein). Despite its central importance in a broad range of cellular processes, many critical aspects of the mechanism of the Arp2/3 complex have yet to be resolved. In particular, some of the individual subunits in the complex have not been assigned clear functional roles, including p40/ARPC1. Here, we dissected the structure and function of Saccharomyces cerevisiae p40/ARPC1, which is encoded by the essential ARC40 gene, by analyzing 39 integrated alleles that target its conserved surfaces. We identified three distinct sites on p40/ARPC1 required for function in vivo: one site contacts p19/ARPC4, one contacts p15/ARPC5, and one site resides in an extended structural “arm” of p40/ARPC1. Using a novel strategy, we purified the corresponding lethal mutant Arp2/3 complexes from yeast and compared their actin nucleation activities. Lethal mutations at the contact with p19/ARPC4 specifically impaired WASp-induced nucleation. In contrast, lethal mutations at the contact with p15/ARPC5 led to unregulated (“leaky”) nucleation in the absence of WASp. Lethal mutations in the extended arm drastically reduced nucleation, and the same mutations disrupted the ability of the purified p40/ARPC1 arm domain to bind the VCA domain of WASp. Together, these data indicate that p40/ARPC1 performs at least three distinct, essential functions in regulating Arp2/3 complex-mediated actin assembly: 1) suppression of spontaneous nucleation by the Arp2/3 complex, which requires proper contacts with p15/ARPC5; 2) propagation of WASp activation signals via contacts with p19/ARPC2; and 3) direct facilitation of actin nucleation through interactions of the extended arm with the VCA domain of WASp.  相似文献   

8.
p50/dynamitin (DM) is a major subunit of the microtubule-associated dynactin complex that is required for stabilization and attachment of its two distinct structural domains, namely the Arp1 rod and the shoulder/sidearm. Here, we define the determinants of p50/DM required for self-oligomerization of the protein and for interactions with other subunits of the dynactin complex. Whereas the N-terminal 1–91-amino acid region of the protein is required and sufficient for binding to the Arp1 rod, additional determinants contained within the first half of the protein are required for optimal recruitment of the p150Glued subunit of the shoulder/sidearm. Overexpression experiments confirmed that the N-terminal 1–91-amino acid region of p50/DM is critical for dynactin functionality, because this fragment acts as a dominant negative to inhibit both dynein-dependent and -independent functions of the complex. Furthermore, the first two predicted coiled-coil motifs of p50/DM contain determinants that mediate self-association of the protein. Interestingly, p50/DM self-association does not contribute to p50/DM-induced disruption of the dynactin complex, but most likely participates in the stabilization of the complex.  相似文献   

9.
In metazoans, dynein-dependent vesicle transport is mediated by dynactin, containing an actin-related protein, Arp1p, together with a cargo-selection complex containing a second actin-related protein, Arp11. Paradoxically, in budding yeast, models of dynactin function imply an interaction with membranes, whereas the lack of microtubule-based vesicle transport implies the absence of a cargo-selection complex. Using both genetic and biochemical approaches, we demonstrate that Arp10p is the functional yeast homologue of Arp11, suggesting the possible existence of a pointed-end complex in yeast. Specifically, Arp10p interacts with Arp1p and other dynactin subunits and is dependent on Arp1p for stability. Conversely, Arp10p stabilizes the dynactin complex by association with the Arp1p filament pointed end. Using a novel hRAS-Arp1p one-hybrid assay, we show that Arp1p associates with the plasma membrane dependent on dynactin subunits, but independent of dynein, and sensitive to cell wall damage. We directly show the association of Arp1p with not only the plasma membrane but also with a less dense membrane fraction. Based on the hRAS-Arp1p assay, loss of Arp10p enhances the apparent association of dynactin with the plasma membrane and suppresses the loss of signaling conferred by cell wall damage.  相似文献   

10.
The dynein activator dynactin is a multiprotein complex with distinct microtubule- and cargo-binding domains. The cargo-binding domain contains a short, actin-like filament of the actin-related protein Arp1, a second actin-related protein, Arp11, and conventional actin. The length of this filament is invariant in dynactin isolated from multiple species and tissues, suggesting that activities that regulate Arp1 polymerization are important for dynactin assembly. Arp11 is present in a protein complex localized at the pointed end of the Arp1 minifilament, whereas actin capping protein (CapZ) is present at the barbed end. Either might cooperate with conventional actin to cap Arp1. We tested the ability of Arp11 to interact with conventional actin and found it could coassemble. Like Arp1, cytosolic Arp11 is found only in dynactin, suggesting that Arp11 and free cytosolic actin do not interact significantly. Recombinant Arp11 and Arp1 were demonstrated to interact by coprecipitation. We developed an in vivo assay for Arp11-Arp1 interaction based on previous observations that Arp1 forms filamentous assemblies when overexpressed in cultured cells. Arp11 significantly decreases the formation of these organized Arp1 assemblies. Finally, this assay was used to confirm the identity of a putative Arp11 homolog in Drosophila melanogaster.  相似文献   

11.
Yeast Las17 protein is homologous to the Wiskott-Aldrich Syndrome protein, which is implicated in severe immunodeficiency. Las17p/Bee1p has been shown to be important for actin patch assembly and actin polymerization. Here we show that Las17p interacts with the Arp2/3 complex. LAS17 is an allele-specific multicopy suppressor of ARP2 and ARP3 mutations; overexpression restores both actin patch organization and endocytosis defects in ARP2 temperature-sensitive (ts) cells. Six of seven ARP2 ts mutants and at least one ARP3 ts mutant are synthetically lethal with las17Delta ts confirming functional interaction with the Arp2/3 complex. Further characterization of las17Delta cells showed that receptor-mediated internalization of alpha factor by the Ste2 receptor is severely defective. The polarity of normal bipolar bud site selection is lost. Las17-gfp remains localized in cortical patches in vivo independently of polymerized actin and is required for the polarized localization of Arp2/3 as well as actin. Coimmunoprecipitation of Arp2p with Las17p indicates that Las17p interacts directly with the complex. Two hybrid results also suggest that Las17p interacts with actin, verprolin, Rvs167p and several other proteins including Src homology 3 (SH3) domain proteins, suggesting that Las17p may integrate signals from different regulatory cascades destined for the Arp2/3p complex and the actin cytoskeleton.  相似文献   

12.
Dynactin is a multimeric protein essential for the minus-end-directed transport driven by microtubule-based motor dynein. The pointed-end subcomplex in dynactin contains p62, p27, p25, and Arp11 subunits, and is thought to participate in interactions with membranous cargoes. We used sequence and structure prediction analysis to study dynactins p25 and p27. Here we present evidence that strongly supports that dynactins p27 and p25 contain the isoleucine-patch motif and adopt the left-handed parallel beta-helix fold. The structural models we obtained could contribute to the understanding of the complex interactions that dynactins are able to establish with cargo particles, microtubules or other dynactin subunits.  相似文献   

13.
The actin-related protein Arp1 (or centractin, actin RPV) is the major subunit of dynactin, a key component of the cytoplasmic dynein motor machinery [1] [2] [3]. Of the ubiquitously expressed members of the Arp superfamily, Arp1 is most similar to conventional actin [4] [5] [6] and, on the basis of conserved sequence features, is predicted to bind ATP and possibly polymerize. In vivo, all cytosolic Arp1 sediments at 20S [7] suggesting that it assembles into oligomers, most likely dynactin - a multiprotein complex known to contain eight or nine Arp1 monomers in a 37 nm filament [8]. The uniform length of Arp1 polymers suggests a novel assembly mechanism that may be governed by a 'ruler' activity. In dynactin, the Arp1 filament is bounded by actin-capping protein at one end and a heterotetrameric protein complex containing the p62 subunit (D.M. Eckley, S.R. Gill, J.B.B., J.E. Heuser, T.A.S., unpublished observations) at the other [8]. In the present study, we analyzed the behavior of highly purified, native Arp1. Arp1 was found to polymerize rapidly into short filaments that were similar, but not identical, in length to those in dynactin. With time, these filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments.  相似文献   

14.
The actin-related protein (Arp) 2/3 complex plays a central role in assembly of actin networks. Because distinct actin-based structures mediate diverse processes, many proteins are likely to make spatially and temporally regulated interactions with the Arp2/3 complex. We have isolated a new activator, Abp1p, which associates tightly with the yeast Arp2/3 complex. Abp1p contains two acidic sequences (DDW) similar to those found in SCAR/WASp proteins. We demonstrate that mutation of these sequences abolishes Arp2/3 complex activation in vitro. Genetic studies indicate that this activity is important for Abp1p functions in vivo. In contrast to SCAR/WASp proteins, Abp1p binds specifically to actin filaments, not monomers. Actin filament binding is mediated by the ADF/cofilin homology (ADF-H) domain of Abp1p and is required for Arp2/3 complex activation in vitro. We demonstrate that Abp1p recruits Arp2/3 complex to the sides of filaments, suggesting a novel mechanism of activation. Studies in yeast and mammalian cells indicate that Abp1p is involved functionally in endocytosis. Based on these results, we speculate that Abp1p may link Arp2/3-mediated actin assembly to a specific step in endocytosis.  相似文献   

15.
The formation of new branched actin filament networks at the cell cortex of migrating cells is choreographed by the actin-related protein (Arp) 2/3 complex. Despite the fundamental role of the Arp2/3 complex in actin nucleation and branching, upstream signals that control the functions of p41-Arc, a putative regulatory component of the mammalian Arp2/3 complex, remain unidentified. Here we show that p41-Arc interacts with p21-activated kinase 1 (Pak1) both in vitro and in vivo. Pak1 phosphorylation of p41-Arc regulates its localization with the Arp2/3 complex in the cortical nucleation regions of cells. Pak1 phosphorylates p41-Arc on threonine 21 in the first WD repeat, and its mutation has functional implications in vivo. Threonine 21 phosphorylation by Pak1 is required for both constitutive and growth-factor-induced cell motility. Pak1 regulation of p41-Arc activation status represents a novel mechanism by which signalling pathways may influence the functions of the Arp2/3 complex, leading to motility in mammalian cells.  相似文献   

16.
Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.  相似文献   

17.
Of the actin-related proteins, Arp1 is the most similar to conventional actin, and functions solely as a component of the multisubunit complex dynactin. Dynactin has been identified as an activator of the microtubule-associated motor cytoplasmic dynein. The role of Arp1 within dynactin is two-fold: (1) it serves as a structural scaffold protein for other dynactin subunits; and (2) it has been proposed to link dynactin, and thereby dynein, with membranous cargo via interaction with spectrin. Using the filamentous fungus Neurospora crassa, we have identified genes encoding subunits of cytoplasmic dynein and dynactin. In this study, we describe a genetic screen for N. crassa Arp1 (ro-4) mutants that are defective for dynactin function. We report that the ro-4(E8) mutant is unusual in that it shows alterations in the localization of cytoplasmic dynein and dynactin and in microtubule organization. In the mutant, dynein/dynactin complexes co-localize with bundled microtubules at hyphal tips. Given that dynein transports membranous cargo from hyphal tips to distal regions, the cytoplasmic dynein and dynactin complexes that accumulate along microtubule tracts at hyphal tips in the ro-4(E8) mutant may have either reduced motor activity or be delayed for activation of motor activity following cargo binding.  相似文献   

18.
Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.  相似文献   

19.
The dynactin complex is one of the components required for the regulation of the cell wall integrity checkpoint, which ensures the completion of cell wall remodeling before mitosis. The core of the dynactin complex is a backbone filament composed of monomers of an actin-related protein, Arp1, which is also involved in nuclear migration. To examine the molecular basis for the dual functions of the dynactin core subunit Arp1p in yeast, we constructed 32 mutated arp1 alleles. We assessed the effects of the mutations on cell wall integrity checkpoint and nuclear migration functions and identified four categories of mutants: 1) those showing no change from the wild type; 2) those resulting in a defective cell wall integrity checkpoint but normal nuclear migration; 3) those with a normal cell wall integrity checkpoint but defective nuclear migration; and 4) those defective in both the cell wall integrity checkpoint and nuclear migration functions. Our results show a separation of the two functions in the molecular structure of Arp1p and indicate that a local surface region of Arp1p is important in maintaining the cell wall integrity checkpoint function.  相似文献   

20.
Kumar S  Zhou Y  Plamann M 《EMBO reports》2001,2(10):939-944
Dynactin has been proposed to link the microtubule-associated motor cytoplasmic dynein with membranous cargo; however, the mechanism by which dynactin–membrane interaction is regulated is unknown. Here we show that dynein and dynactin exist in discrete cytosolic and membrane-bound states in the filamentous fungus Neurospora crassa. Results from in vitro membrane-binding studies show that dynein and dynactin–membrane interaction is co-dependent. p150Glued of dynactin has been shown to interact with dynein intermediate chain and dynactin Arp1 filament; however, it is not known to play a direct role in membrane binding. In this report we describe our analysis of 43 p150Glued mutants, and we show that C-terminal deletions which remove the terminal coiled-coil (CC2) and basic domain (BD) result in constitutive dynactin–membrane binding. In vitro addition of recombinant p150Glued CC2+BD protein blocks dynactin–membrane binding. We propose that the C-terminal domains of p150Glued regulate dynactin–membrane binding through a steric mechanism that controls accessibility of the Arp1 filament of dynactin to membranous cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号