首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Summary By applying photographic, electrical conductivity, and electrooptical methods, the transverse variation of bubble size and velocity, the local gas holdup, and the local specific gas/liquid interfacial area were estimated in a bench scale bubble-column bioreactor containing distilled water. The liquid velocity profile, the transverse turbulence intensity variations, and the turbulence energy dissipation scale were also measured by a hot film turbulence probe and constant temperature anemometer technique.  相似文献   

2.
A pilot scale airlift reactor with multiple net draft tubes was developed. The reactor, 29?cm in diameter and 300?cm height, had four modules of double net draft tubes. Bubble size, bubble number, gas holdup, and volumetric mass transfer coefficient were measured under different superficial air velocities. The air velocity had little effect on bubble size but had significant influence on bubble number. A bubble column was also investigated for comparison. The airlift reactor had a higher gas holdup and volumetric mass transfer coefficient than those in the bubble column. The draft tubes in the airlift reactor substantially improved the reactor performance.  相似文献   

3.
The local properties of the dispersed gas phase (gasholdup, bubble diamater, and bubble velocity) were measured and evaluated at different positions in the riser and downcomer of a pilot plant reactor and, for comparison, in a laboratory reactor. These were described in Parts I and II of this series of articles during yeast cultivation and with model media. In the riser of the pilot plant reactor, the local gas holdup and bubble velocities varied only slightly in axial direction. The gas holdup increased considerably, while the bubble velocity increased only slightly with aeration rate. The bubble size diminished with increasing distance from the aerator in the riser, since the primary bubble size was larger than the equilibrium bubble size. In the downcomer, the mean bubble size was smaller than in the riser. The mean bubble size varied only slightly, the bubble velocity was accelerated, and the gas holdup decreased from top to bottom in the downcomer. In pilot plant at constant aeration rate, the properties of the dispersed phase were nearly constant during the batch cultivation, i.e., they depended only slightly on the cell concentration. In the laboratory reactor, the mean bubble sizes were much larger than in the pilot plant reactor. In the laboratory reactor, the bubble velocities in the riser and downcomer increased, and the mean gas holdup and bubble diameter in the downcomer remained constant as the aeration rate was increased.  相似文献   

4.
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas–liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U G) range of 0.0004–0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K La) by a factor of 1.2–1.9 compared to the flat sheet membrane.  相似文献   

5.
Gas holdup data in multistage bubble column is analyzed through slip velocity incorporating pseudo hydrostatic effect, momentum transfer effect, particle-to-particle and particle-to-wall effects and coalescence effects. The bubble size, required for the estimation of single bubble rise velocity, is satisfactorily predicted using the model due to Molerus [9], and the influence of gas throughput, the perforation diameter and the free area of the horizontal plate, as well as the plate spacing on bubble size are examined.  相似文献   

6.
During the cultivation of E. coli in an airlift tower-loop bioreactor, the following properties were measured: transverse profiles of Sauter bubble diameter, d(S); local relative gas holdup, E(G); bubble rise velocity, u(BS); local mean velocity, ū turbulence intensity, u'; macrotime scale, T(EL); dissipation time scale, tau(E); power spectrum, E(n); and energy dissipation spectrum D(n) at different distances from the aerator. The influence, distance from the aerator, absence and/or presnece of cells, and batch and/or continuous-culture operation on the behavior of the two-phase system are discussed on the basis of these properties.  相似文献   

7.
Gas holdup and oxygen transfer studies in non-Newtonian suspensions of cellulose fibres conducted in two large (0.098 m(3) each) reactors are described. Both reactors-a bubble column and a similar internal loop airlift-were unusual in that they had rectangular cross-sections. In all cases gas holdups and k(L)a(L) declined with increasing solid concentration and, under identical conditions, the bubble column performed better than the airlift. The fluid systems used were carefully selected to represent mould fermentation broths.The behavior of true mass transfer coeffcient k(L) with changes in bubble size is discussed for these systems.  相似文献   

8.
Detailed measurements of multiphase flows that prevail in bioreactors tell us that different transport mechanisms are dominating on different observation scales. The consequence in terms of reactor modeling is that the processes on different scales can be treated independently. A three-dimensional, dynamical model is presented that can be used to describe bubble column bioreactors on the reactor scale. It is based on the Navier-Stokes equation system. On the next smaller scale, the dynamics of the gas phase is described in a Lagrangian way, by tracking many bubble clusters or bubbles simultaneously on their way through the reactor. The model is capable of describing bubble columns of different size and can thus be used for scale-up. Its performance is demonstrated with a production-scale beer fermentor. (c) 1996 John Wiley & Sons, Inc.  相似文献   

9.
Bioprocess and Biosystems Engineering - In bubble column bioreactors, the hydrodynamic behavior like mixing time, bubble size and morphology of filamentous fungi are influenced by the construction...  相似文献   

10.
Summary The following two-phase properties were evaluated in bubble column reactors with porous plate (5 m pore diameter) or perforated plate (1 mm and/or 3 mm hole diameter) gas distributors using distilled water or a 1% methanol solution: transverse profiles of the mean and Sauter bubble diameters, local gas holdups, true mean liquid and bubble velocities. Furthermore, swarm bubble velocity distributions were evaluted and compared with calculated values.  相似文献   

11.
An airlift reactor with double net draft tubes was developed. A sparger was located between the two draft tubes. The draft tubes had a significant effect on breaking bubbles into smaller ones. The assessment of the reactor performance was based on gas holdup, mixing time, and volumetric mass transfer coefficient. The proposed reactor had higher gas holdup and volumetric mass transfer coefficient, and lower mixing time in comparison with those of the bubble column. Application of the proposed reactor to fermentation of Saccharomyces cerevisiae demonstrated that the cultivation time was significantly shortened.  相似文献   

12.
The effects of aeration on the flow characteristics of water in a glass pilot-scale airlift fermentor have been examined. The 55-L capacity fermentor consisted of a 15.2-cm-i.d. riser column with a 5.1-cm-i.d. downcomer tube. It was found that the average bubble size diminished with increased aeration. Typically, average bubble sizes ranged from 4.32 mm at a superficial gas velocity of 0.64 cm/s to 1.92 mm at 10.3 cm/s. A gas holdup of 0.19 was attained with superficial gas velocities (vs) on the order of 10 cm/s, indicating the highly gassed nature of the fluid in the riser section of the fermentor. Circulation velocities of markers placed in the fermentor decreased with increasing aeration rates due to increased turbulence and axial liquid back mixing within the riser section. Actual volumetric liquid circulation rates remained relatively constant (0.36–0.49 L/s) for values of (vs) up to 10 cm/s. Based on theoretical calculations, the ascending velocity of bubbles in a swarm reached 54 cm/s in the range of (vs) values studied.  相似文献   

13.
The influence of Aspergillus niger broth rheology, bioreactor geometry, and superficial gas velocity on the volumetric liquid phase oxygen transfer coefficient (k(L)a(L)), riser gas holdup (epsilon(GR)), and circulating liquid velocity (u(LR)) was studied in a bubble column (BC) and two external-circulation-loop airlift (ECLAL) bioreactors. The results are compared to those of previous studies on homogeneous fluids and in particular with a recent study on non-Newtonian carboxymethylcellulose (CMC) solutions conducted in the same contactors used for the A. niger fermentations. As expected from the CMC-based studies, in the heterogeneous broths of A. niger epsilon(GR), k(L)a(L), and u(LR) decreased with increasing broth apparent viscosity; epsilon(GR) and k(L)a(L) decreased with increasing downcomer-to-riser cross-sectional area ratio, A(d)/A(r), whereas u(LR) increased with increasing A(d)/A(r). Gas holdup data in the airlift fermentations of A. niger were well predicted by the CMC-based correlation. However, the CMC-based correlations produced conservative estimations of k(L)a(L) and overestimates of u(LR) compared to the observed values in the A. niger broths.  相似文献   

14.
Summary A simple, inexpensive apparatus wholly consisting of readily available components is developed to measure the local volumetric gas holdup in aerated agitated bioreactors based on the principle of phase separation. The device can determine the gas holdup to as low as 0.1% with a measurement error of less than 10%. To prevent under-withdrawing or over-withdrawing the dispersed gas, a sampling rate yielding a superficial velocity at the sampling probe opening equal to 50% of the stirrer tip speed is recommended.  相似文献   

15.
Gas transfer and mixing were characterized in a 32-L bubble column reactor equipped with a commercially available rubber membrane diffuser. The performance of the membrane diffuser indicates that the slits in the membrane are best described as holes with elastic lids, acting as valves cutting off bubbles from the gas stream. The membrane diffuser thus functions as a one-way valve preventing backflow of liquid. Our design of the bottom plate of the reactor enabled us to optimize the aeration by changing the tension of the membrane. We thereby achieved mass transfer coefficients higher than those previously reported in bubble columns. A strong dependence of mass transfer on gas holdup and bubble size was indicated by estimates based on these two variables. The microalga, Rhodomonas sp. , sensitive to chemical and physical stress, was maintained for 8 months in continuous culture with a productivity identical to cultures grown in stirred tank reactors. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

16.
Reversed flow jet loop bioreactors (RFJLB) have been used extensively for 2 or 3 phase biochemical reactions. From visual observations and gas holdup data, 3 distinct flow regimes are identified in RFJLB, namely: (1) Bubble free regime (BFR), where bubbles are observed in the draft tube only; (2) Transition regime (TR), where bubbles are observed in both the draft tube and the annulus, but without circulation; and (3) Complete bubble circulation regime (CBCR), where bubbles circulate in both the draft tube and annulus. CBCR is the most desirable regime, since the reactor operation in this regime gives a higher gas holdup and mass transfer rate than in the other two regimes. In the present study, the hydrodynamic behavior of RFJLB was investigated under various operational and geometrical conditions, such as gas and liquid velocity and nozzle configuration. Factors affecting the critical liquid circulation velocity (CLCV) above which the CBCR is established were identified and evaluated quantitatively.  相似文献   

17.
18.

Miniaturized bubble columns (MBCs) have different hydrodynamics in comparison with the larger ones, but there is a lack of scientific data on MBCs. Hence, in this study, the effect of gas hold-up, flow regimes, bubble size distribution on volumetric oxygen mass transfer coefficient at different pore size spargers and gas flow rates in MBCs in the presence and absence of microorganisms were investigated. It was found that flow regime transition occurred around low gas flow rates of 1.18 and 0.85 cm/s for small (16–40 µm) and large (40–100 µm) pore size spargers, respectively. Gas hold-up and KLa in MBC with small size sparger were higher than those with larger one, with an increasing effect in the presence of microorganisms. A comparison revealed that the wall effect on the flow regime and gas hold-up in MBCs was greater than bench-scale bubble columns. The KLa values significantly increased up to tenfold using small pore size sparger. In the MBC and stirred tank bioreactors, the maximum obtained cell concentrations were OD600 of 41.5 and 43.0, respectively. Furthermore, it was shown that in MBCs, higher KLa and lower turbulency could be achieved at the end of bubbly flow regime.

  相似文献   

19.
Pluronic F-68 is a widely used protective agent in sparged animal cell bioreactors. In this study, the attachment-independent Spodoptera frugiperda Sf9 insect cell line was used to explore the mechanism of this protective effect and the nature of cell damage in sparged bioreactors. First, bubble incorporation via cavitation or vortexing was induced by increasing the agitation rate in a surface-aerated bioreactor; insect cells were rapidly killed under these conditions of the absence of polyols. Supplementing the medium with 0.2% (w/v) Pluronic F-68, however, fully protected the cells. Next, cell growth was compared in two airlift bioreactors with similar geometry but different sparger design; one of these bioreactors consisted of a thin membrane distributor, while the other consisted of a porous stainless steel distributor. The flow rates and bubble sizes were comparable in the two bioreactors. Supplementing the medium with 0.2% (w/v) Pluronic F-68 provided full protection to cells growing in the bioreactor with the membrane distributor but provided essentially no protection in the bioreactor with the stainless steel distributor. These results strongly suggest that cell damage can occur in the vicinity of the gas distributor. In addition, these results demonstrate that bubble size and gas flow rate are not the only important considerations of cell damage in sparged bioreactors. A model of cell death in sparged bioreactors is presented.  相似文献   

20.
This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号