首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

3.
Quinolinic acid (Q.A.) which inhibits gluconeogenesis at the site of phosphoenolpyruvate (PEP) synthesis, reduced the content of PEP while elevating that of aspartate and malate in rat livers perfused with a medium containing 10 mM L-lactate. Glucagon at 10(-9) M did not affect Q.A. inhibition of lactate gluconeogenesis nor the depression of PEP level, but further elevated malate and aspartate accumulation. Exogenous butyrate had the same effect as glucagon on these parameters. Butylmalonate (BM), an inhibitor of mitochondrial malate transport, inhibited lactate and propionate gluconeogenesis to similar extents. The addition of 10(-9) M glucagon had no effect on BM inhibition of lactate gluconeogenesis, but almost completely reversed BM inhibition of propionate gluconeogenesis. These results suggest that glucagon may act on at least two sites, resulting in elevated hepatic gluconeogenesis. First, it may stimulate dicarboxylic acid synthesis (malate and oxaloacetate, specifically) through activation of pyruvate carboxylation. Secondly, it may stimulate synthesis of other dicarboxylic acids (fumarate, for example) by activating certain steps of the tricarboxylic acid cycle. The stimulatory effect of glucagon on gluconeogenesis in the perfused rat liver is well documented (1, 2). Exton et al., who earlier located the site of stimulation between pyruvate and PEP synthesis (3), proposed that glucagon stimulated PEP synthesis in the perfused rat liver (4), while reports from Williamson et al. (5) suggested the pyruvate-carboxylase reaction as the site of glucagon action. Stimulation at sites above PEP formation and of portions of the tricarboxylic acid cycle (4) by glucagon have also been suggested (6). In the present experiments, we have used substrates entering at different parts of the gluconeogenic pathway, and specific inhibitors to further resolve the action of glucagon.  相似文献   

4.
5.
6.
7.
8.
9.
Nitrogen metabolism in the perfused rat liver   总被引:5,自引:0,他引:5  
  相似文献   

10.
11.
12.
13.
Carbohydrate metabolism of the perfused rat liver   总被引:1,自引:16,他引:1  
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13.3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This ;inhibition' was abolished by oleate or glucagon.  相似文献   

14.
The effect of the mitochondrial pyruvate transport inhibitors, α-cyanocinnamate and α-cyano-4-hydroxycinnamate, on the regulation of the pyruvate dehydrogenase multienzyme complex was investigated in the isolated perfused rat heart. Metabolic flux through pyruvate dehydrogenase was monitored by measuring 14CO2 production from [1-14C]pyruvate infused into the heart. A stepwise increase in the concentration of the inhibitor in the influent perfusate effected a stepwise reduction of the flux through the enzyme complex at all pyruvate concentrations tested. However, the magnitude of the α-cyanocinnamate-insensitive flux through pyruvate dehydrogenase increased markedly as the infused pyruvate concentration was elevated. The inhibition of pyruvate decarboxylation in the heart was nearly completely reversed following cessation of the inhibitor infusion. α-Cyanocinnamate was nearly 10 times more potent than α-cyano-4-hydroxycinnamate as an inhibitor of the flux through pyruvate dehydrogenase. Maximally inhibiting levels of α-cyano-4-hydroxycinnamate caused an increase in the ratio of the active form of pyruvate dehydrogenase to the total extractable enzyme complex from a value of 0.5 at 1 mm infused pyruvate (in the absence of the inhibitor) to a value of near unity. This result indicated that the intramitochondrial pyruvate concentration was severely depleted by the infusion of the inhibitor and that the enzyme complex was interconverted to its active form under these conditions. Removal of the inhibitor from the perfusion medium again lowered the ratio of the active/total pyruvate dehydrogenase to near its original level of 0.5 and restored the original flux through the enzyme complex indicating that mitochondrial pyruvate transport has been restored. The results of this study indicate that α-cyanocinnamate and its derivatives are effective inhibitors of pyruvate transport in the perfused heart and that carrier-mediated pyruvate transport can be an important parameter in the regulation of the activation state and the metabolic flux through the pyruvate dehydrogenase multienzyme complex in the heart.  相似文献   

15.
The effect of phenylpyruvate on pyruvate metabolism in rat brain   总被引:5,自引:5,他引:0  
1. The effect of phenylalanine and phenylpyruvate on the metabolism of pyruvate by isolated mitochondria from rat brain was investigated. 2. Phenylpyruvate inhibited the fixation of H(14)CO(3) (-) in the presence of pyruvate by intact rat brain mitochondria, whereas phenylalanine and other metabolites of this amino acid had no inhibitory effect on this process. 3. Pyruvate carboxylase activity in freeze-dried rat brain mitochondrial preparations was also inhibited only by phenylpyruvate, and a ;mixed type' inhibition was observed. 4. The K(m) for pyruvate of rat brain pyruvate carboxylase was about 0.2mm. 5. The concentration of phenylpyruvate required for a 50% inhibition of H(14)CO(3) (-) fixation by the intact mitochondria and of pyruvate carboxylase activity was dependent on the concentration of pyruvate used in the incubation medium. 6. The possible significance of inhibition of pyruvate carboxylase activity by phenylpyruvate in the brains of phenylketonuric patients is discussed.  相似文献   

16.
1. The effects of adenine nucleotides on pyruvate metabolism by isolated liver cells and isolated mitochondria have been investigated. The amount of pyruvate carboxylated has been estimated by determining the tricarboxylic acid-cycle intermediates, glutamate and aspartate accumulating in the incubation medium. The extent of pyruvate oxidation has been assessed by measuring oxygen uptake and the yield of 14CO2 from [1-14C]pyruvate and [2-14C]pyruvate. 2. When catalytic amounts of adenine nucleotides (1–2mm) were added to suspensions of isolated liver cells incubated with pyruvate an ATP:ADP ratio greater than 6:1 was maintained. Both pyruvate oxidation to acetyl-CoA and the oxidation of acetyl-CoA through the tricarboxylic acid cycle were stimulated but pyruvate carboxylation was not affected. The production of acetyl-CoA exceeded the capacity of the cells for the oxidation of acetyl-CoA and the excess was converted into ketone bodies. 3. If a low ATP:ADP ratio was maintained in isolated cells or mitochondria by incubating them with dinitrophenol or hexokinase, pyruvate carboxylation was grossly inhibited, oxygen uptake depressed and ketone-body formation stimulated. Measurement of oxaloacetate concentrations confirmed that under these conditions oxaloacetate was rate-limiting for the oxidation of acetyl-CoA via the tricarboxylic acid cycle. The inclusion in the incubation medium of fumarate (1·25mm) completely prevented the ketogenic action of dinitrophenol or hexokinase. 4. When ADP (5mm) was added to a suspension of isolated liver cells incubated with pyruvate an actual ADP concentration of about 1mm was attained. This brought about effects on pyruvate metabolism similar to those obtained with dinitrophenol or hexokinase. 5. These results support the concept that the relative concentrations of adenine nucleotides within the liver cell may play a role in governing the rates of pyruvate oxidation and carboxylation. In addition, they provide further evidence that the availability of oxaloacetate in the liver cell can play a key role in determining whether acetyl-CoA arising from pyruvate is oxidized through the tricarboxylic acid cycle or converted into ketone bodies.  相似文献   

17.
The oxidative decarboxylation and subsequent production of glucose from alpha-ketobutyrate were studied using perfused livers from fasted rats. The production of 14CO2 from alpha-keto-[1-14C]butyrate increased monotonically while the production of glucose from alpha-ketobutyrate was biphasic as the perfusate concentration of alpha-ketobutyrate was increased. The biphasic gluconeogenic response using alpha-ketobutyrate as the gluconeogenic precursor was similar to that observed with propionate. The decarboxylation of alpha-ketobutyrate was found to be exquisitely sensitive to the effects of the monocarboxylate transport inhibitor, alpha-cyanocinnamate. Infusion of beta-hydroxybutyrate caused a substantial inhibition of alpha-ketobutyrate decarboxylation while dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, did not stimulate the metabolism of alpha-ketobutyrate but was inhibitory. The effects of alpha-ketobutyrate infusion on pyruvate decarboxylation were tested and it was found that at low perfusate pyruvate concentrations (ca. 0.25 mM) increasing alpha-ketobutyrate led to increasing inhibition of pyruvate decarboxylation, while at high perfusate pyruvate concentrations (ca. 2.5 mM) an initial inhibition was apparent which did not increase substantially with increasing alpha-ketobutyrate concentrations. The results obtained indicate that the regulation of alpha-ketobutyrate metabolism by oxidative decarboxylation differs significantly from that of pyruvate. In addition, while the rate of gluconeogenesis using alpha-ketobutyrate as a precursor was remarkably similar to that using propionate as a gluconeogenic precursor, the effects of alpha-ketobutyrate on the oxidative decarboxylation of pyruvate were qualitatively different from the effects of propionate on pyruvate metabolism.  相似文献   

18.
1. Loading the isolated perfused liver from well-fed rats with xylitol (20mm) caused a depletion of adenine nucleotides and Pi and an accumulation of α-glycerophosphate. The ATP content fell to 66% of the control value after 10min and to 32% after 80min. The ADP and AMP contents also fell. After 80min 63% of the total adenine nucleotides and 59% of the Pi had been lost. 2. The α-glycerophosphate content rose from 0.13 to 4.74μmol/g at 10min and reached 8.02μmol/g at 40min. 3. Xylitol was rapidly metabolized, the main products being glucose, lactate and pyruvate. 4. The [lactate]/[pyruvate] ratio in the presence of xylitol rose to 30–40. 5. On perfusion of livers from starved animals the main product of xylitol metabolism was glucose and the mean ratio xylitol removed/glucose formed was 1.29 (corrected for endogenous glucose and lactate production). This is close to the predicted value of 1.2. 6. Evidence is presented indicating that the loss of adenine nucleotides caused by xylitol is not due to the increased ATP consumption but to the accumulation of α-glycerophosphate and depletion of Pi. 7. The loss of adenine nucleotides accounts for the hyperuricaemia which can occur after xylitol infusion in man. 8. The relevance of the findings to the clinical use of xylitol as an energy source is discussed.  相似文献   

19.
20.
Fatty acid metabolism in the perfused rat liver   总被引:4,自引:4,他引:0       下载免费PDF全文
1. The formation of acetoacetate, beta-hydroxybutyrate and glucose was measured in the isolated perfused rat liver after addition of fatty acids. 2. The rates of ketone-body formation from ten fatty acids were approximately equal and independent of chain length (90-132mumol/h per g), with the exception of pentanoate, which reacted at one-third of this rate. The [beta-hydroxybutyrate]/[acetoacetate] ratio in the perfusion medium was increased by long-chain fatty acids. 3. Glucose was formed from all odd-numbered fatty acids tested. 4. The rate of ketone-body formation in the livers of rats kept on a high-fat diet was up to 50% higher than in the livers of rats starved for 48h. In the livers of fat-fed rats almost all the O(2) consumed was accounted for by the formation of ketone bodies. 5. The ketone-body concentration in the blood of fat-fed rats rose to 4-5mm and the [beta-hydroxybutyrate]/[acetoacetate] ratio rose to 11.5. 6. When the activity of the microsomal mixed-function oxidase system, which can bring about omega-oxidation of fatty acids, was induced by treatment of the rat with phenobarbitone, there was no change in the ketone-body production from fatty acids, nor was there a production of glucose from even-numbered fatty acids. The latter would be expected if omega-oxidation occurred. Thus omega-oxidation did not play a significant role in the metabolism of fatty acids. 7. Arachidonate was almost quantitatively converted into ketone bodies and yielded no glucose, demonstrating that gluconeogenesis from poly-unsaturated fatty acids with an even number of carbon atoms does not occur. 8. The rates of ketogenesis from unsaturated fatty acids (sorbate, undecylenate, crotonate, vinylacetate) were similar to those from the corresponding saturated fatty acids. 9. Addition of oleate together with shorter-chain fatty acids gave only a slightly higher rate of ketone-body formation than oleate alone. 10. Glucose, lactate, fructose, glycerol and other known antiketogenic substances strongly inhibited endogenous ketogenesis but had no effects on the rate of ketone-body formation in the presence of 2mm-oleate. Thus the concentrations of free fatty acids and of other oxidizable substances in the liver are key factors determining the rate of ketogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号