首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, three pairs of structural-maintenance-of-chromosome (SMC) proteins are found in conserved multisubunit protein complexes required for chromosomal organization. Cohesin, the Smc1/3 complex, mediates sister chromatid cohesion while two condensin complexes containing Smc2/4 facilitate chromosome condensation. Smc5/6 scaffolds an essential complex required for homologous recombination repair. We have examined the response of smc6 mutants to the inhibition of DNA replication. We define homologous recombination-dependent and -independent functions for Smc6 during replication inhibition and provide evidence for a Rad60-independent function within S phase, in addition to a Rad60-dependent function following S phase. Both genetic and physical data show that when forks collapse (i.e., are not stabilized by the Cds1Chk2 checkpoint), Smc6 is required for the effective repair of resulting lesions but not for the recruitment of recombination proteins. We further demonstrate that when the Rad60-dependent, post-S-phase Smc6 function is compromised, the resulting recombination-dependent DNA intermediates that accumulate following release from replication arrest are not recognized by the G2/M checkpoint.  相似文献   

2.
The Smc5-6 complex is an essential regulator of chromosome integrity and a key component of the DNA damage response. As an essential DNA repair factor, the Smc5-6 complex is expected to interact with DNA and/or chromatin during the execution of its functions. How the Smc6 protein promotes the binding of the Smc5-6 complex to DNA lesions is currently unknown. We show here that Smc6 is a strong DNA-binding protein with a clear preference for single-stranded DNA substrates. Importantly, Smc6 associates with DNA in the absence of other Smc5-6 complex components and its activity is modulated by nucleotides. Our results also show that the minimal size of single-stranded DNA required for tight association with Smc6 is ~60 nucleotides in length. Taken together, our results suggest that Smc6 contributes to DNA repair in vivo by targeting the Smc5-6 complex to single-stranded DNA substrates created during the processes of homologous recombination and/or DNA replication.  相似文献   

3.
The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.  相似文献   

4.
Coordination of DNA damage responses via the Smc5/Smc6 complex   总被引:7,自引:0,他引:7       下载免费PDF全文
The detection of DNA damage activates DNA repair pathways and checkpoints to allow time for repair. Ultimately, these responses must be coordinated to ensure that cell cycle progression is halted until repair is completed. Several multiprotein complexes containing members of the structural maintenance of chromosomes family of proteins have been described, including the condensin and cohesin complexes, that are critical for chromosomal organization. Here we show that the Smc5/Smc6 (Smc5/6) complex is required for a coordinated response to DNA damage and normal chromosome integrity. Fission yeast cells lacking functional Smc6 initiate a normal checkpoint response to DNA damage, culminating in the phosphorylation and activation of the Chk1 protein kinase. Despite this, cells enter a lethal mitosis, presumably without completion of DNA repair. Another subunit of the complex, Nse1, is a conserved member of this complex and is also required for this response. We propose that the failure to maintain a checkpoint response stems from the lack of ongoing DNA repair or from defective chromosomal organization, which is the signal to maintain a checkpoint arrest. The Smc5/6 complex is fundamental to genome integrity and may function with the condensin and cohesin complexes in a coordinated manner.  相似文献   

5.
DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5-Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5-Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5-Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events.  相似文献   

6.
Repair of DNA lesions by homologous recombination relies on the copying of genetic information from an intact homologous sequence. However, many eukaryotic genomes contain repetitive sequences such as the ribosomal gene locus (rDNA), which poses a risk for illegitimate recombination. Therefore, the eukaryotic cell has evolved mechanisms to favor equal sister chromatid exchange (SCE) and suppress unequal SCE, single-strand annealing and break-induced replication. In the budding yeast Saccharomyces cerevisiae, the tight regulation of homologous recombination at the rDNA locus is dependent on the Smc5–Smc6 complex and sumoylation of Rad52, which directs DNA double-strand breaks in the rDNA to relocalize from within the nucleolus to the nucleoplasm before association with the recombination machinery. The relocalization before repair is important for maintaining rDNA stability. The focus of this review is the regulation of recombinational DNA repair at the rDNA locus by sumoylation and the Smc5–Smc6 complex in S. cerevisiae.  相似文献   

7.
The structural maintenance of chromosomes (SMC) family of proteins play essential roles in genomic stability. SMC heterodimers are required for sister-chromatid cohesion (Cohesin: Smc1 & Smc3), chromatin condensation (Condensin: Smc2 & Smc4), and DNA repair (Smc5 & Smc6). The SMC heterodimers do not function alone and must associate with essential non-SMC subunits. To gain further insight into the essential and DNA repair roles of the Smc5-6 complex, we have purified fission yeast Smc5 and identified by mass spectrometry the co-precipitating proteins, Nse1 and Nse2. We show that both Nse1 and Nse2 interact with Smc5 in vivo, as part of the Smc5-6 complex. Nse1 and Nse2 are essential proteins and conserved from yeast to man. Loss of Nse1 and Nse2 function leads to strikingly similar terminal phenotypes to those observed for Smc5-6 inactivation. In addition, cells expressing hypomorphic alleles of Nse1 and Nse2 are, like Smc5-6 mutants, hypersensitive to DNA damage. Epistasis analysis suggests that like Smc5-6, Nse1, and Nse2 function together with Rhp51 in the homologous recombination repair of DNA double strand breaks. The results of this study strongly suggest that Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex.  相似文献   

8.
The SMC5/6 protein complex consists of the Smc5, Smc6 and Non-Smc-Element (Nse) proteins and is important for genome stability in many species. To identify novel components in the DNA repair pathway, we carried out a genetic screen to identify mutations that confer reduced resistance to the genotoxic effects of caffeine, which inhibits the ATM and ATR DNA damage response proteins. This approach identified inactivating mutations in CG5524 and MAGE, homologs of genes encoding Smc6 and Nse3 in yeasts. The fact that Smc5 mutants are also caffeine-sensitive and that Mage physically interacts with Drosophila homologs of Nse proteins suggests that the structure of the Smc5/6 complex is conserved in Drosophila. Although Smc5/6 proteins are required for viability in S. cerevisiae, they are not essential under normal circumstances in Drosophila. However, flies carrying mutations in Smc5, Smc6 and MAGE are hypersensitive to genotoxic agents such as ionizing radiation, camptothecin, hydroxyurea and MMS, consistent with the Smc5/6 complex serving a conserved role in genome stability. We also show that mutant flies are not compromised for pre-mitotic cell cycle checkpoint responses. Rather, caffeine-induced apoptosis in these mutants is exacerbated by inhibition of ATM or ATR checkpoint kinases but suppressed by Rad51 depletion, suggesting a functional interaction involving homologous DNA repair pathways that deserves further scrutiny. Our insights into the SMC5/6 complex provide new challenges for understanding the role of this enigmatic chromatin factor in multi-cellular organisms.  相似文献   

9.
Efficient repair of DNA double-stranded breaks (DSB) requires a coordinated response at the site of lesion. Nucleolytic resection commits repair towards homologous recombination, which preferentially occurs between sister chromatids. DSB resection promotes recruitment of the Mec1 checkpoint kinase to the break. Rtt107 is a target of Mec1 and serves as a scaffold during repair. Rtt107 plays an important role during rescue of damaged replication forks, however whether Rtt107 contributes to the repair of DSBs is unknown. Here we show that Rtt107 is recruited to DSBs induced by the HO endonuclease. Rtt107 phosphorylation by Mec1 and its interaction with the Smc5-Smc6 complex are both required for Rtt107 loading to breaks, while Rtt107 regulators Slx4 and Rtt101 are not. We demonstrate that Rtt107 has an effect on the efficiency of sister chromatid recombination (SCR) and propose that its recruitment to DSBs, together with the Smc5-Smc6 complex is important for repair through the SCR pathway.  相似文献   

10.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

11.
Members of the structural maintenance of chromosome (SMC) family of proteins are essential regulators of genomic stability. In particular, the conserved Smc5-6 complex is required for efficient DNA repair, checkpoint signaling, and DNA replication in all eukaryotes. Despite these important functions, the actual nature of the DNA substrates recognized by the Smc5-6 complex in chromosomes is currently unknown. Furthermore, how the core SMC components of the Smc5-6 complex use their ATPase-driven mechanochemical activities to act on chromosomes is not understood. Here, we address these issues by purifying and defining the DNA-binding activity of Smc5. We show that Smc5 binds strongly and specifically to single-stranded DNA (ssDNA). Remarkably, this DNA-binding activity is independent of Smc6 and is observed with the monomeric form of Smc5. We further show that Smc5 ATPase activity is essential for its functions in vivo and that ATP regulates the association of Smc5 with its substrates in vitro. Finally, we demonstrate that Smc5 is able to bind efficiently to oligonucleotides consistent in size with ssDNA intermediates produced during DNA replication and repair. Collectively, our data on the DNA-binding activities of Smc5 provide a compelling molecular basis for the role of the Smc5-6 complex in the DNA damage response.  相似文献   

12.
Cohesin complexes mediate sister chromatid cohesion. Cohesin also becomes enriched at DNA double‐strand break sites and facilitates recombinational DNA repair. Here, we report that cohesin is essential for the DNA damage‐induced G2/M checkpoint. In contrast to cohesin's role in DNA repair, the checkpoint function of cohesin is independent of its ability to mediate cohesion. After RNAi‐mediated depletion of cohesin, cells fail to properly activate the checkpoint kinase Chk2 and have defects in recruiting the mediator protein 53BP1 to DNA damage sites. Earlier work has shown that phosphorylation of the cohesin subunits Smc1 and Smc3 is required for the intra‐S checkpoint, but Smc1/Smc3 are also subunits of a distinct recombination complex, RC‐1. It was, therefore, unknown whether Smc1/Smc3 function in the intra‐S checkpoint as part of cohesin. We show that Smc1/Smc3 are phosphorylated as part of cohesin and that cohesin is required for the intra‐S checkpoint. We propose that accumulation of cohesin at DNA break sites is not only needed to mediate DNA repair, but also facilitates the recruitment of checkpoint proteins, which activate the intra‐S and G2/M checkpoints.  相似文献   

13.
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways.  相似文献   

14.
The essential and evolutionarily conserved Smc5-Smc6 complex (Smc5/6) is critical for the maintenance of genome stability. Partial loss of Smc5/6 function yields several defects in DNA repair, which are rescued by inactivation of the homologous recombination (HR) machinery. Thus HR is thought to be toxic to cells with defective Smc5/6. Recent work has highlighted a role for Smc5/6 and the Sgs1 DNA helicase in preventing the accumulation of unresolved HR intermediates. Here we investigate how deletion of MPH1, encoding the orthologue of the human FANCM DNA helicase, rescues the DNA damage sensitivity of smc5/6 but not sgs1Δ mutants. We find that MPH1 deletion diminishes accumulation of HR intermediates within both smc5/6 and sgs1Δ cells, suggesting that MPH1 deletion is sufficient to decrease the use of template switch recombination (TSR) to bypass DNA lesions. We further explain how avoidance of TSR is nonetheless insufficient to rescue defects in sgs1Δ mutants, by demonstrating a requirement for Sgs1, along with the post-replicative repair (PRR) and HR machinery, in a pathway that operates in mph1Δ mutants. In addition, we map the region of Mph1 that binds Smc5, and describe a novel allele of MPH1 encoding a protein unable to bind Smc5 (mph1-Δ60). Remarkably, mph1-Δ60 supports normal growth and responses to DNA damaging agents, indicating that Smc5/6 does not simply restrain the recombinogenic activity of Mph1 via direct binding. These data as a whole highlight a role for Smc5/6 and Sgs1 in the resolution of Mph1-dependent HR intermediates.  相似文献   

15.
Brc1-mediated DNA repair and damage tolerance   总被引:4,自引:0,他引:4       下载免费PDF全文
The structural maintenance of chromosome (SMC) proteins are key elements in controlling chromosome dynamics. In eukaryotic cells, three essential SMC complexes have been defined: cohesin, condensin, and the Smc5/6 complex. The latter is essential for DNA damage responses; in its absence both repair and checkpoint responses fail. In fission yeast, the UV-C and ionizing radiation (IR) sensitivity of a specific hypomorphic allele encoding the Smc6 subunit, rad18-74 (renamed smc6-74), is suppressed by mild overexpression of a six-BRCT-domain protein, Brc1. Deletion of brc1 does not result in a hypersensitivity to UV-C or IR, and thus the function of Brc1 relative to the Smc5/6 complex has remained unclear. Here we show that brc1Delta cells are hypersensitive to a range of radiomimetic drugs that share the feature of creating lesions that are an impediment to the completion of DNA replication. Through a genetic analysis of brc1Delta epistasis and by defining genes required for Brc1 to suppress smc6-74, we find that Brc1 functions to promote recombination through a novel postreplication repair pathway and the structure-specific nucleases Slx1 and Mus81. Activation of this pathway through overproduction of Brc1 bypasses a repair defect in smc6-74, reestablishing resolution of lesions by recombination.  相似文献   

16.
Smc5-6 is a highly conserved protein complex related to cohesin and condensin involved in the structural maintenance of chromosomes. In yeasts the Smc5-6 complex is essential for proliferation and is involved in DNA repair and homologous recombination. siRNA depletion of genes involved in the Smc5-6 complex in cultured mammalian cells results in sensitivity to some DNA damaging agents. In order to gain further insight into its role in mammals we have generated mice mutated in the Smc6 gene. A complete knockout resulted in early embryonic lethality, demonstrating that this gene is essential in mammals. However, mutation of the highly conserved serine-994 to alanine in the ATP hydrolysis motif in the SMC6 C-terminal domain, resulted in mice with a surprisingly mild phenotype. With the neo gene selection marker in the intron following the mutation, resulting in reduced expression of the SMC6 gene, the mice were reduced in size, but fertile and had normal lifespans. When the neo gene was removed, the mice had normal size, but detailed phenotypic analysis revealed minor abnormalities in glucose tolerance, haematopoiesis, nociception and global gene expression patterns. Embryonic fibroblasts derived from the ser994 mutant mice were not sensitive to killing by a range of DNA damaging agents, but they were sensitive to the induction of sister chromatid exchanges induced by ultraviolet light or mitomycin C. They also accumulated more oxidative damage than wild-type cells.  相似文献   

17.
Of the three structural maintenance of chromosomes (SMC) complexes, Smc5/6 remains the most poorly understood. Genetic studies have shown that Smc5/6 mutants are defective in homologous recombination (HR), and consistent with this, Smc5/6 is enriched at lesions. However, Smc5/6 is essential for viability, but HR is not, and the terminal phenotype of null Smc5/6 mutants is mitotic failure. Here we analyze the function of Nse1, which contains a variant RING domain that is characteristic of ubiquitin ligases. Whereas deletion of this domain causes DNA damage sensitivity and mitotic failure, serine mutations in conserved cysteines do not. However, these mutations suppress the DNA damage sensitivity of Smc5/6 hypomorphs but not that of HR mutants and remarkably decrease the recruitment of Smc5/6 to loci containing lesions marked for HR-mediated repair. Analysis of DNA repair pathways in suppressed double mutants suggests that lesions are channeled into recombination-dependent and error-free postreplication repair. Thus the HR defect in Smc5/6 mutants appears to be due to the presence of dysfunctional complexes at lesions rather than to reflect an absolute requirement for Smc5/6 to complete HR.  相似文献   

18.
Lee KM  Nizza S  Hayes T  Bass KL  Irmisch A  Murray JM  O'Connell MJ 《Genetics》2007,175(4):1585-1595
Smc5/6 is a structural maintenance of chromosomes complex, related to the cohesin and condensin complexes. Recent studies implicate Smc5/6 as being essential for homologous recombination. Each gene is essential, but hypomorphic alleles are defective in the repair of a diverse array of lesions. A particular allele of smc6 (smc6-74) is suppressed by overexpression of Brc1, a six-BRCT domain protein that is required for DNA repair during S-phase. This suppression requires the postreplication repair (PRR) protein Rhp18 and the structure-specific endonucleases Slx1/4 and Mus81/Eme1. However, we show here that the contribution of Rhp18 is via a novel pathway that is independent of PCNA ubiquitination and PRR. Moreover, we identify Exo1 as an additional nuclease required for Brc1-mediated suppression of smc6-74, independent of mismatch repair. Further, the Apn2 endonuclease is required for the viability of smc6 mutants without extrinsic DNA damage, although this is not due to a defect in base excision repair. Several nucleotide excision repair genes are similarly shown to ensure viability of smc6 mutants. The requirement for excision factors for the viability of smc6 mutants is consistent with an inability to respond to spontaneous lesions by Smc5/6-dependent recombination.  相似文献   

19.
The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome mis‐segregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination‐dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome‐wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage‐induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination‐competent conformation primed for replication restart.  相似文献   

20.
We demonstrate a role for Qri2 in the essential DNA repair function of the Smc5/6 complex in Saccharomyces cerevisiae. We generated temperature-sensitive (ts) mutants in QRI2 and characterized their properties. The mutants arrest after S phase and prior to mitosis. Furthermore, the arrest is dependant on the Rad24 checkpoint, and is also accompanied by phosphorylation of the Rad53 checkpoint effector kinase. The mutants also display genome instability and are sensitive to agents that damage DNA. Two-hybrid screens reveal a physical interaction between Qri2 and proteins that are non-Smc elements of the Smc5/6 DNA repair complex, which is why we propose the name NSE4 for the open reading frame previously known as QRI2. A key role for Nse4 in Smc5/6 function is likely, as overexpressing known subunits of the Smc5/6 complex suppresses nse4(ts) cell cycle arrest. The nse4(ts) growth arrest is non-lethal and unlike the catastrophic nuclear fragmentation phenotype of smc6(ts) mutants, the nucleus remains intact; replicative intermediates and sheared DNA are not detected. This could imply a role for Nse4 in maintenance of higher order chromosome structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号