首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous examination of the accessibility of a panel of single-Cys mutants in transmembrane domain III (TMDIII) of the yeast mitochondrial citrate transport protein to the hydrophilic, cysteine-specific methanethiosulfonate reagent MTSES enabled identification of the water-accessible surface of this TMD. Further studies on the effect of citrate on MTS reagent accessibility, indicated eight sites within TMD III at which citrate conferred temperature-independent protection, thus providing strong evidence for participation of these residues in the formation of a portion of the substrate translocation pathway. Unexpectedly, citrate did not protect against inhibition of the Leu120Cys variant, despite its location on a water- and citrate-accessible surface of the TMDIII helix. This led to the hypothesis that in the 3-dimensional CTP structure, TMDIV packs against TMDIII in a manner such that the Leu120 side-chain folds behind the side-chain of Gln182. The present investigations addressed this hypothesis by examining the properties of the Gln182Cys single mutant and the Leu120Cys/Gln182Ala double mutant. We observed that in contrast to our findings with the Leu120Cys mutant, citrate did protect the Gln182Cys variant against MTSES-mediated inhibition. Importantly, truncation of the Gln182 side-chain to Ala enabled citrate to protect the Leu120Cys double mutant against inhibition. In combination these data support the idea that the Gln182 side-chain lines the transport path and sterically blocks access of citrate to the Leu120 side-chain. In a parallel series of investigations, we constructed 24 single-Cys substitution mutants that were chosen based on their hypothesized importance in substrate binding and/or translocation. We observed that substitution of Cys for residues E34, K37, K83, R87, Y148, D236, K239, T240, R276, and R279 resulted in > or =98% inactivation of CTP function, suggesting an essential structural and/or mechanistic role for these native residues. Superposition of this functional data onto a detailed 3-dimensional homology model of the CTP structure indicates that the side-chains of each of these residues project into the putative transport pathway. We hypothesize that a subset of these residues, in combination with four previously identified essential residues, define the citrate binding site(s) within the CTP.  相似文献   

2.
Previous examination of the accessibility of a panel of single-Cys mutants in transmembrane domain III (TMDIII) of the yeast mitochondrial citrate transport protein to hydrophilic, cysteine-specific methanethiosulfonate reagents, enabled identification of the water-accessible surface of this domain and suggested its potential participation in the formation of a portion of the substrate translocation pathway. To evaluate this idea, we conducted a detailed characterization of the functional properties of 20 TMDIII single-Cys substitution mutants. Kinetic studies indicate that the A118C, S123C, and K134C mutants displayed a 3- to 7-fold increase in K(m). Moreover, the A118C mutation caused a doubling of the V(max) value, whereas the S123C, E131C, and K134C mutations caused V(max) to dramatically decrease, resulting in a reduction of the catalytic efficiencies of these three mutants by >97%. Examination of the ability of citrate to protect against the inhibition mediated by sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) indicated that citrate conferred significant protection of cysteines substituted at eight water-accessible locations (i.e. Gly-115, Leu-116, Gly-117, Leu-121, Ser-123, Val-127, Glu-131, and Thr-135), but not at other sites. Importantly, similar levels of protection were observed at both 4 degrees C and 20 degrees C. The temperature independence of the protection indicates that substrate binding and/or occupancy of the transport pathway sterically blocks the access of MTSES to these sites, thereby providing direct protection, without involvement of a major protein conformational change. The significance of these extensive functional investigations is discussed in terms of the three-dimensional CTP homology model that we previously developed and a new model of the dimer interface.  相似文献   

3.
The objective of this study was to identify the role of individual amino acid residues in determining the substrate specificity of the yeast mitochondrial citrate transport protein (CTP). Previously, we showed that the CTP contains at least two substrate-binding sites. In this study, utilizing the overexpressed, single-Cys CTP-binding site variants that were functionally reconstituted in liposomes, we examined CTP specificity from both its external and internal surfaces. Upon mutation of residues comprising the more external site, the CTP becomes less selective for citrate with numerous external anions able to effectively inhibit [14C]citrate/citrate exchange. Thus, the site 1 variants assume the binding characteristics of a nonspecific anion carrier. Comparison of [14C]citrate uptake in the presence of various internal anions versus water revealed that, with the exception of the R189C mutant, the other site 1 variants showed substantial uniport activity relative to exchange. Upon mutation of residues comprising site 2, we observed two types of effects. The K37C mutant displayed a markedly enhanced selectivity for external citrate. In contrast, the other site 2 mutants displayed varying degrees of relaxed selectivity for external citrate. Examination of internal substrates revealed that, in contrast to the control transporter, the R181C variant exclusively functioned as a uniporter. This study provides the first functional information on the role of specific binding site residues in determining mitochondrial transporter substrate selectivity. We interpret our findings in the context of our homology-modeled CTP as it cycles between the outward-facing, occluded, and inward-facing states.  相似文献   

4.
Utilizing cysteine scanning mutagenesis, with functional Cys-less citrate transport protein (CTP) serving as the starting template, we previously demonstrated that four single-Cys mutants located in transmembrane domains III and IV, rendered the CTP nonfunctional. The present investigations assess and quantify the secondary structure of the Cys-less CTP and the four single-Cys mutants, both in the absence and presence of citrate, via circular dichroism (CD) spectroscopy. In detergent micelles, highly purified Cys-less CTP contained approximately 50% alpha-helix and approximately 20% beta-sheet. The CD spectra of the G119C, E122C, R181C, and R189C mutants in detergent micelles were virtually superimposable with that of the functional Cys-less CTP, thereby suggesting that the wild-type residues, rather than affecting structure, may assume important mechanistic roles. Exogenously added citrate caused a significant change in the CD spectra of all solubilized CTP samples. Analyses of the spectra of the Cys-less CTP indicated an approximately 10% increase in its alpha-helical content in the presence of citrate. The conformational changes effected by the addition of substrate were less pronounced with the single-Cys mutants. Studies of the Cys-less CTP reconstituted in liposomes indicated that while the CD spectra was red-shifted, the net secondary structure of the reconstituted carrier is approximately equivalent to that of the transporter in detergent micelles, and displayed a response to added citrate. In combination, the above studies indicate that purified Cys-less CTP in either sarkosyl micelles or in liposomes, and the four inactive single-Cys mutants in sarkosyl micelles, retain native-like structure, and thus represent ideal material for detailed structural characterization.  相似文献   

5.
The present investigation utilized the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy to identify the effect of citrate, the natural ligand, and transport inhibitors on the conformation of the yeast mitochondrial citrate transport protein (CTP) reconstituted in liposomal vesicles. Spin label was placed at six different locations within the CTP in order to monitor conformational changes that occurred near each of the transporter’s two substrate binding sites, as well as at more distant domains within the CTP architecture. We observed that citrate caused little change in the EPR spectra. In contrast the transport inhibitors 1,2,3-benzenetricarboxylate (BTC), pyridoxal 5′-phosphate (PLP), and compound 792949 resulted in spectral changes that indicated a decrease in the flexibility of the attached spin label at each of the six locations tested. The rank order of the immobilizing effect was compound 792949 > PLP > BTC. The four spin-label locations that report on the CTP substrate binding sites displayed the greatest changes in the EPR spectra upon addition of inhibitor. Furthermore, we found that when compound 792949 was added vectorially (i.e., extra- and/or intra-liposomally), the immobilizing effect was mediated nearly exclusively by external reagent. In contrast, upon addition of PLP vectorially, the effect was mediated to a similar extent from both the external and the internal compartments. In combination our data indicate that: i) citrate binding to the CTP substrate binding sites does not alter side-chain and/or backbone mobility in a global manner and is consistent with our expectation that both in the absence and presence of substrate the CTP displays the flexibility required of a membrane transporter; and ii) binding of each of the transport inhibitors tested locked multiple CTP domains into more rigid conformations, thereby exhibiting long-range inter-domain conformational communication. The differential vectorial effects of compound 792949 and PLP are discussed in the context of the CTP homology-modeled structure and potential mechanistic molecular explanations are given.  相似文献   

6.
Cytidine 5'-triphosphate synthase catalyses the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as an allosteric effector to promote catalysis. Limited trypsin-catalysed proteolysis, Edman degradation, and site-directed mutagenesis were used to identify peptide bonds C-terminal to three basic residues (Lys187, Arg429, and Lys432) of Escherichia coli CTP synthase that were highly susceptible to proteolysis. Lys187 is located at the CTP/UTP-binding site within the synthase domain, and cleavage at this site destroyed all synthase activity. Nucleotides protected the enzyme against proteolysis at Lys187 (CTP > ATP > UTP > GTP). The K187A mutant was resistant to proteolysis at this site, could not catalyse CTP formation, and exhibited low glutaminase activity that was enhanced slightly by GTP. K187A was able to form tetramers in the presence of UTP and ATP. Arg429 and Lys432 appear to reside in an exposed loop in the glutamine amide transfer (GAT) domain. Trypsin-catalyzed proteolysis occurred at Arg429 and Lys432 with a ratio of 2.6 : 1, and nucleotides did not protect these sites from cleavage. The R429A and R429A/K432A mutants exhibited reduced rates of trypsin-catalyzed proteolysis in the GAT domain and wild-type ability to catalyse NH3-dependent CTP formation. For these mutants, the values of kcat/Km and kcat for glutamine-dependent CTP formation were reduced approximately 20-fold and approximately 10-fold, respectively, relative to wild-type enzyme; however, the value of Km for glutamine was not significantly altered. Activation of the glutaminase activity of R429A by GTP was reduced 6-fold at saturating concentrations of GTP and the GTP binding affinity was reduced 10-fold. This suggests that Arg429 plays a role in both GTP-dependent activation and GTP binding.  相似文献   

7.
The present investigation identifies the molecular basis for the well-documented inhibition of the mitochondrial inner membrane citrate transport protein (CTP) function by the lysine-selective reagent pyridoxal 5′-phosphate. Kinetic analysis indicates that PLP is a linear mixed inhibitor of the Cys-less CTP, with a predominantly competitive component. We have previously concluded that the CTP contains at least two substrate binding sites which are located at increasing depths within the substrate translocation pathway and which contain key lysine residues. In the present investigation, the roles of Lys-83 in substrate binding site one, Lys-37 and Lys-239 in substrate binding site two, and four other off-pathway lysines in conferring PLP-inhibition of transport was determined by functional characterization of seven lysine to cysteine substitution mutants. We observed that replacement of Lys-83 with cysteine resulted in a 78% loss of the PLP-mediated inhibition of CTP function. In contrast, replacement of either Lys-37 or Lys-239 with cysteine caused a modest reduction in the inhibition caused by PLP (i.e., 31% and 20% loss of inhibition, respectively). Interestingly, these losses of PLP-mediated inhibition could be rescued by covalent modification of each cysteine with MTSEA, a reagent that adds a lysine-like moiety (i.e. SCH2CH2NH3 +) to the cysteine sulfhydryl group. Importantly, the replacement of non-binding site lysines (i.e., Lys-45, Lys-48, Lys-134, Lys-141) with cysteine resulted in little change in the PLP inhibition. Based upon these results, we conducted docking calculations with the CTP structural model leading to the development of a physical binding model for PLP. In combination, our data support the conclusion that PLP exerts its main inhibitory effect by binding to residues located within the two substrate binding sites of the CTP, with Lys-83 being the primary determinant of the total PLP effect since the replacement of this single lysine abolishes nearly all of the observed inhibition by PLP. This work was supported by National Institutes of Health Grant GM-054642 to R.S.K.  相似文献   

8.
Utilizing site-directed mutagenesis in combination with chemical modification of mutated residues, we have studied the roles of cysteine and arginine residues in the mitochondrial citrate transport protein (CTP) from Saccharomyces cerevisiae. Our strategy consisted of the sequential replacement of each of the four endogenous cysteine residues with Ser or in the case of Cys(73) with Val. Wild-type and mutated forms of the CTP were overexpressed in Escherichia coli, purified, and reconstituted in phospholipid vesicles. During the sequential replacement of each Cys, the effects of both hydrophilic and hydrophobic sulfhydryl reagents were examined. The data indicate that Cys(73) and Cys(256) are primarily responsible for inhibition of the wild-type CTP by hydrophilic sulfhydryl reagents. Experiments conducted with triple Cys replacement mutants (i.e. Cys(192) being the only remaining Cys) indicated that sulfhydryl reagents no longer inhibit but in fact stimulate CTP function 2-3-fold. Following the simultaneous replacement of all four endogenous Cys, the functional properties of the resulting Cys-less CTP were shown to be quite similar to those of the wild-type protein. Finally, utilizing the Cys-less CTP as a template, the roles of Arg(181) and Arg(189), two positively charged residues located within transmembrane domain IV, in CTP function were examined. Replacement of either residue with a Cys abolishes function, whereas replacement with a Lys or a Cys that is subsequently covalently modified with (2-aminoethyl)methanethiosulfonate hydrobromide, a reagent that restores positive charge at this site, supports CTP function. The results clearly show that positive charge at these two positions is essential for CTP function, although the chemistry of the guanidinium residue is not. Finally, these studies: (i) definitely demonstrate that Cys residues do not play an important role in the mechanism of the CTP; (ii) prove the utility of the Cys-less CTP for studying structure/function relationships within this metabolically important protein; and (iii) have led to the hypothesis that the polar face of alpha-helical transmembrane domain IV, within which Arg(181), Arg(189), and Cys(192) are located, constitutes an essential portion of the citrate translocation pathway through the membrane.  相似文献   

9.
The melibiose permease of Salmonella typhimurium (MelBSt) catalyzes the stoichiometric symport of galactopyranoside with a cation (H+, Li+, or Na+) and is a prototype for Na+-coupled major facilitator superfamily (MFS) transporters presenting from bacteria to mammals. X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding; however, understanding of the cation site and symport mechanism is still vague. To further investigate the transport mechanism and conformational dynamics of MelBSt, we generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. Surprisingly, 105 mutants (22%) exhibit poor transport activities (<15% of Cys-less transport), although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. Helices I and X and transmembrane residues Asp and Tyr are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport, as expected. We mapped 50 loss-of-function mutants outside of these substrate-binding sites that suffered from defects in protein expression/stability or conformational dynamics. This complete Cys-scanning mutagenesis study indicates that MelBSt is highly susceptible to single-Cys mutations, and this library will be a useful tool for further structural and functional studies to gain insights into the cation-coupled symport mechanism for Na+-coupled MFS transporters.  相似文献   

10.
Glutathione is essential for maintaining the intracellular redox environment and is synthesized from gamma-glutamylcysteine, glycine, and ATP by glutathione synthetase (GS). To examine the reaction mechanism of a eukaryotic GS, 24 Arabidopsis thaliana GS (AtGS) mutants were kinetically characterized. Within the gamma-glutamylcysteine/glutathione-binding site, the S153A and S155A mutants displayed less than 4-fold changes in kinetic parameters with mutations of Glu-220 (E220A/E220Q), Gln-226 (Q226A/Q226N), and Arg-274 (R274A/R274K) at the distal end of the binding site resulting in 24-180-fold increases in the K(m) values for gamma-glutamylcysteine. Substitution of multiple residues interacting with ATP (K313M, K367M, and E429A/E429Q) or coordinating magnesium ions to ATP (E148A/E148Q, N150A/N150D, and E371A) yielded inactive protein because of compromised nucleotide binding, as determined by fluorescence titration. Other mutations in the ATP-binding site (E371Q, N376A, and K456M) resulted in greater than 30-fold decreases in affinity for ATP and up to 80-fold reductions in turnover rate. Mutation of Arg-132 and Arg-454, which are positioned at the interface of the two substrate-binding sites, affected the enzymatic activity differently. The R132A mutant was inactive, and the R132K mutant decreased k(cat) by 200-fold; however, both mutants bound ATP with K(d) values similar to wild-type enzyme. Minimal changes in kinetic parameters were observed with the R454K mutant, but the R454A mutant displayed a 160-fold decrease in k(cat). In addition, the R132K, R454A, and R454K mutations elevated the K(m) value for glycine up to 11-fold. Comparison of the pH profiles and the solvent deuterium isotope effects of A. thaliana GS and the Arg-132 and Arg-454 mutants also suggest distinct mechanistic roles for these residues. Based on these results, a catalytic mechanism for the eukaryotic GS is proposed.  相似文献   

11.
Iberiotoxin (IbTX or alpha-KTx 1.3), a selective, high-affinity blocker of the large-conductance, calcium-activated (maxi-K) channel, exhibits a unique, asymmetric distribution of charge. To test how these charges control kinetics of IbTX binding, we generated five mutants at two positions, K27 and R34, that are highly conserved among other isotoxins. The dissociation and association rate constants, koff and kon, were determined from toxin-blocked and -unblocked durations of single maxi-K channels incorporated into planar lipid bilayers. Equilibrium dissociation constant (Kd) values were calculated from koff/kon. The IbTX mutants K27N, K27Q, and R34N caused large increases in Kd values compared to wild-type, suggesting that the IbTX interaction surface encompasses these residues. A well-established pore-blocking mechanism for IbTX predicts a voltage dependence of toxin-blocked times following occupancy of a potassium binding site in the channel pore. Time constants for block by K27R were approximately 5-fold slower at -20 mV versus +40 mV, while neutralization of K27 relieved the voltage dependence of block. This suggests that K27 in IbTX interacts with a potassium binding site in the pore. Neutralized mutants of K27 and R34, with zero net charge, displayed toxin association rate constants approximately 10-fold slower than wild-type. Association rates for R34N diminished approximately 19-fold when external potassium was increased from 30 to 300 mM. These findings suggest that simple net charge and diffusional processes do not control ingress of IbTX into the channel vestibule.  相似文献   

12.
Several residues lining the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase (NMNATase) were mutated in an effort to better characterize their roles in substrate binding and catalysis. Residues selected were Arg-11 and Arg-136, both of which had previously been implicated as substrate binding residues, as well as His-16 and His-19, part of the HXGH active site motif and postulated to be of importance in catalysis. Kinetic studies revealed that both Arg-11 and Arg-136 contributed to the binding of the substrate, ATP. When these amino acids were replaced by lysines, the apparent Km values of the respective mutants for ATP decreased by factors of 1.3 and 2.9 and by factors of 1.9 and 8.8 when the same residues were changed to alanines. All four Arg mutants displayed unaltered Km values for NMN. The apparent kcat values of the R11K and R136K mutants were the same as those of WT NMNATase but the apparent kcat values of the alanine mutants had decreased. Crystal structures of the Arg mutants revealed NAD+ and SO42- molecules trapped at their active sites. The binding interactions of NAD+ were unchanged but the binding of SO42- was altered in these mutants compared with wild type. The alanine mutants at positions His-16 and His-19 retained approximately 6 and 1.3%, respectively, of WT NMNATase activity indicating that His-19 is a key catalytic group. Surprisingly, this H19A mutant displayed a novel and distinct mode of NAD+ binding when co-crystallized in the presence of NAD+ and SO42-.  相似文献   

13.
In the P(2)-type ATPases, there is growing evidence that four alpha-helical stalk segments connect the cytoplasmic part of the molecule, responsible for ATP binding and hydrolysis, to the membrane-embedded part that mediates cation transport. The present study has focused on stalk segment 4, which displays a significant degree of sequence conservation among P(2)-ATPases. When site-directed mutants in this region of the yeast plasma membrane H(+)-ATPase were constructed and expressed in secretory vesicles, more than half of the amino acid substitutions led to a severalfold decrease in the rate of ATP hydrolysis, although they had little or no effect on the coupling between hydrolysis and transport. Strikingly, mutant ATPases bearing single substitutions of 13 consecutive residues from Ile-359 through Gly-371 were highly resistant to inorganic orthovanadate, with IC(50) values at least 10-fold above those seen in the wild-type enzyme. Most of the same mutants also displayed a significant reduction in the K(m) for MgATP and an increase in the pH optimum for ATP hydrolysis. Taken together, these changes in kinetic behavior point to a shift in equilibrium from the E(2) conformation of the ATPase toward the E(1) conformation. The residues from Ile-359 through Gly-371 would occupy three full turns of an alpha-helix, suggesting that this portion of stalk segment 4 may provide a conformationally active link between catalytic sites in the cytoplasm and cation-binding sites in the membrane.  相似文献   

14.
The mitochondrial citrate transport protein (CTP) has been investigated by mutating 28 consecutive residues within transmembrane domain III (TMDIII), one at a time, to cysteine. A cysteine-less CTP that retains wild-type functional properties, served as the starting template. The single Cys CTP mutants were abundantly expressed in Escherichia coli, isolated, and functionally reconstituted in a liposomal system. The accessibility of each single Cys mutant to two methanethiosulfonate reagents was evaluated by determining the rate constants for inhibition of CTP function. These rate constants varied by over five orders of magnitude. With two independent data sets we observed peaks and troughs in the rate constant data at identical amino acid positions and a periodicity of 4 was observed from residues 123-137. Based on the pattern of accessibility we conclude that residues 123-137 exist as an alpha-helix. Although less certain, a combination of the rate constant data and the specific activity data with the single Cys mutants suggests that the alpha-helical secondary structure may extend to residue 113. Furthermore, the rate constant data define water-accessible and water-inaccessible faces of the helix. We infer that the water-accessible face comprises a portion of the substrate translocation pathway through the CTP, whereas the water-inaccessible surface faces the lipid bilayer. Finally, based on a combination of the CTP inhibition rate constant data and the existence of significant sequence identity with a transmembrane segment within glycophorin A that forms a portion of its dimer interface, a model for a putative CTP TMDIII-TMDIII' dimer interface has been developed.  相似文献   

15.
Gerharz T  Reinelt S  Kaspar S  Scapozza L  Bott M 《Biochemistry》2003,42(19):5917-5924
The sensor kinase CitA and the response regulator CitB of Klebsiella pneumoniae form the paradigm of a subfamily of bacterial two-component regulatory systems that are capable of sensing tri- or dicarboxylates in the environment and then induce transporters for the uptake of these compounds. We recently showed that the separated periplasmic domain of CitA, termed CitAP (encompasses residues 45-176 supplemented with an N-terminal methionine residue and a C-terminal hexahistidine tag), is a highly specific citrate receptor with a K(d) of 5.5 microM at pH 7. To identify positively charged residues involved in binding the citrate anion, each of the arginine, lysine, and histidine residues in CitAP was exchanged for alanine, and the resulting 17 muteins were analyzed by isothermal titration calorimetry (ITC). In 12 cases, the K(d) for citrate was identical to that of wild-type CitAP or slightly changed (3.9-17.2 microM). In one case (R98A), the K(d) was 6-fold decreased (0.8 microM), whereas in four cases (R66A, H69A, R107A, and K109A) the K(d) was 38- to >300-fold increased (0.2 to >1 mM). The secondary structure of the latter five proteins in their apo-form as deduced from far-UV circular dichroism (CD) spectra did not differ from the apo-form of wild-type CitAP; however, all of them showed an increased thermostability. Citrate increased the melting point (T(m)) of wild-type CitAP and mutein R98A by 6.2 and 9.5 degrees C, respectively, but had no effect on the T(m) of the four proteins with disturbed binding. Three of the residues important for citrate binding (R66, H69, and R107) are highly conserved in the CitA subfamily of sensor kinases, indicating that they might be involved in ligand binding by many of these sensor kinases.  相似文献   

16.
CitS of Klebsiella pneumoniae is a secondary transporter that transports citrate in symport with 2 Na(+) ions. Reaction of Cys-398 and Cys-414, which are located in a cytoplasmic loop of the protein that is believed to be involved in catalysis, with thiol reagents resulted in significant inhibition of uptake activity. The reactivity of the two residues was determined in single Cys mutants in different catalytic states of the transporter and from both sides of the membrane. The single Cys mutants were shown to have the same transport stoichiometry as wild type CitS, but the C398S mutation was responsible for a 10-fold loss of affinity for Na(+). Both cysteine residues were accessible from the periplasmic as well as from the cytoplasmic side of the membrane by the membrane-impermeable thiol reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) suggesting that the residues are part of the translocation site. Binding of citrate to the outward facing binding site of the transporter resulted in partial protection against inactivation by N-ethylmaleimide, whereas binding to the inward facing binding site resulted in essentially complete protection. A 10-fold higher concentration of citrate was required at the cytoplasmic rather than at the periplasmic side of the membrane to promote protection. Only marginal effects of citrate binding were seen on reactivity with MTSET. Binding of Na(+) at the periplasmic side of the transporter protected both Cys-398 and Cys-414 against reaction with the thiol reagents, whereas binding at the cytoplasmic side was less effective and discriminated between Cys-398 and Cys-414. A model is presented in which part of the cytoplasmic loop containing Cys-398 and Cys-414 folds back into the translocation pore as a pore-loop structure. The loop protrudes into the pore beyond the citrate-binding site that is situated at the membrane-cytoplasm interface.  相似文献   

17.
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to > 70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76-->Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96-->Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent. Moreover, the rate of inactivation of Gly 96-->Cys permease is enhanced at least 2-fold in the presence of beta-galactopyranosyl 1-thio-beta, D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.  相似文献   

18.
The Kdp-ATPase of Escherichia coli is a four-subunit P-type ATPase that accumulates K(+) with high affinity and specificity. Residues clustered in four regions of the KdpA subunit of Kdp were implicated as critical for K(+) binding from the analysis of mutants with reduced affinity for K(+) (Buurman, E., Kim, K.-T., and Epstein, W. (1995) J. Biol. Chem. 270, 6678-6685). K(+) binding by this pump has been analyzed in detail by site-directed mutagenesis. We have examined 83 of the 557 residues in KdpA, from 11 to 34 residues in each of four binding clusters known to affect K(+) binding. Amber mutations were constructed in a plasmid carrying the kdpFABC structural genes. Transferring these plasmids to 12 suppressor strains, each inserting a different amino acid at amber codons, created 12 different substitutions at the mutated sites. This study delineates the four clusters and confirms that they are important for K(+) affinity but have little effect on the rate of transport. At only 21 of the residues studied did at least three substitutions alter affinity for K(+), an indication that a residue is in or very near a K(+) binding site. At many residues lysine was the only substitution that altered its affinity. The effect of lysine is most likely a repulsive effect of this cationic residue on K(+) and thus reflects the effective distance between a residue and the site of binding or passage of K(+) in KdpA. Once a crystallographic structure of Kdp is available, this measure of effective distance will help identify the path of K(+) as it moves through the KdpA subunit to cross the membrane.  相似文献   

19.
We have used homology modeling to construct a three-dimensional model of the yeast mitochondrial citrate transport protein (CTP), based on the recently published x-ray crystal structure of another mitochondrial transport protein, the ADP/ATP carrier. Superposition of the backbone traces of the homology-modeled CTP onto the crystallographically determined ADP carrier structure indicates that the CTP transmembrane domains are well modeled (i.e., root mean square deviation of 0.94 A), whereas the loops facing the intermembrane space and the mitochondrial matrix are less certain (i.e., root mean square deviation values of 0.72-2.06 A). The homology-modeled CTP is consistent with our earlier de novo models of the transporter's transmembrane domains, with respect to residues which face into the transport path. Importantly, the resulting model is consistent with our previous experimental data obtained from measuring reactivity of 34 single cysteine mutants in transmembrane domains 3 and 4 with methanethiosulfonate reagents. The model also points to a likely dimer interface region. In conclusion, our data help to define the substrate translocation pathway in both the modeled CTP structure and the crystallographic ADP carrier structure.  相似文献   

20.
A prominent region of the Na(+)-dependent citrate carrier (CitS) from Klebsiella pneumoniae is the highly conserved loop X-XI, which contains a putative citrate binding site. To monitor potential conformational changes within this region by single-molecule fluorescence spectroscopy, the target cysteines C398 and C414 of the single-Cys mutants (CitS-sC398, CitS-sC414) were selectively labeled with the thiol-reactive fluorophores AlexaFluor 546/568 C(5) maleimide (AF(546), AF(568)). While both single-cysteine mutants were catalytically active citrate carriers, labeling with the fluorophore was only tolerated at C398. Upon citrate addition to the functional protein fluorophore conjugate CitS-sC398-AF(546), complete fluorescence quenching of the majority of molecules was observed, indicating a citrate-induced conformational change of the fluorophore-containing domain of CitS. This quenching was specific for the physiological substrate citrate and therefore most likely reflecting a conformational change in the citrate transport mechanism. Single-molecule studies with dual-labeled CitS-sC398-AF(546/568) and dual-color detection provided strong evidence for a homodimeric association of CitS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号