共查询到20条相似文献,搜索用时 15 毫秒
1.
Total serum haemolytic complement (HC) activity has been determined in 130 young bulls of the Norwegian Red Cattle Breed (NRF). A highly significant sire effect (p < 0.01) on HC with a corresponding heritability of about 0.75 was estimated. Evidence of any simple mode of inheritance is not produced but the distribution patterns of HC indicate influences of relatively few genes. 相似文献
2.
Fenaille F Le Mignon M Groseil C Ramon C Riandé S Siret L Bihoreau N 《Glycobiology》2007,17(9):932-944
Human complement factor H (CFH) is a plasma glycoprotein involved in the regulation of the alternative pathway of the complement system. A deficiency in CFH is a cause of severe pathologies like atypical haemolytic uraemic syndrome (aHUS). CFH is a 155-kDa glycoprotein containing nine potential N-glycosylation sites. In the current study, we present a quantitative glycosylation analysis of CFH using capillary electrophoresis and a complete site-specific N-glycan characterization using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS). A 17.9-kDa mass decrease, observed after glycosidase treatment, indicated that N-glycosylation is the major post-translational modification of CFH. This mass difference is consistent with CFH glycosylation by diantennary disialylated glycans of 2204 Da on eight sites. CFH was not sensitive to endoglycosidase H (Endo H) deglycosylation, indicating the absence of hybrid and oligomannose structures. Quantitative analysis showed that CFH is mainly glycosylated by complex, diantennary disialylated, non-fucosylated glycans. Disialylated fucosylated and monosialylated non-fucosylated oligosaccharides were also identified. MS analysis allowed complete characterization of the protein backbone, verification of the glycosylation sites and site-specific N-glycan identification. The absence of glycosylation at Asn199 of the NGSP sequence of CFH is shown. Asn511, Asn700, Asn784, Asn804, Asn864, Asn893, Asn1011 and Asn1077 are glycosylated essentially by diantennary disialylated structures with a relative distribution varying between 45% for Asn804 and 75% for Asn864. Diantennary monosialylated glycans and triantennary trisialylated fucosylated and non-fucosylated structures have also been identified. Interestingly, the sialylation level along with the amount of triantennary structures decreases from the N- to the C-terminal side of the protein. 相似文献
3.
PspC recruits complement factor H (FH) to the pneumococcal surface. While there is differential expression of pspC during infection, detection of PspC on the surface of viable pneumococci is difficult due to variability among PspCs. We analyzed FH binding to detect PspC expression on the surface of pneumococcal isolates from different pathological sources. Using flow cytometry, we investigated FH-binding to 89 low-passage clinical isolates classified by disease manifestation (systemic, mucosal, or carriage). Carriage isolates recruited significantly more FH to their surfaces than either systemic or mucosal isolates, and this binding was independent of capsular serotype. 相似文献
4.
Yoichi Sakakibara Masahito Suiko P. H. P. Fernando Tomio Ohashi Ming-Cheh Liu 《Cytotechnology》1994,14(2):97-107
A major tyrosine-O-sulfate (TyrS)-binding protein present in bovine serum was purified to electrophoretic homogeneity using a combination of TyrS-Affi-Gel 10 affinity chromatographyy, DEAE-Bio-Gel A ion-exchange chromatography, and hydroxylapatite chromatography. The purified TyrS-binding protein migrated as doublet protein bands with apparent molecular weights of ca. 160, 000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. N-termini of the two forms of purified TyrS-binding protein contain most likely identical sequence for the first fifteen amino acids residues, which displays a high degree of homology to those of human and mouse complement factor H. Furthermore, the purified TyrS-binding protein exhibited immunologic cross-reactivity with anti-human complement factor H. These results indicate the identity of the purified TyrS-binding protein being bovine complement factor H. The two forms of the purified bovine factor H were investigated with respect to the sensitivity to limited trypsin digestion. The high-molecular weight form was cleaved into two fragments with apparent molecular masses of, respectively, 45 kD and 125 kD. The low-molecular weight form was cleaved in a different manner to generate three major fragments with molecular masses of 25 kD, 45 kD and 100 kD, respectively. Limited V8 protease mapping of the two forms yielded similar, yet unidentical, peptide band patterns. Purified bovine factor H appeared to bind agarose-bonded heparin through its anion-binding domain and the binding was inhibited by the presence of free heparin or dextran sulfate.Abbreviations HEPES
N-2-hydroxylpiperazine-N-2-ethanesulfonic acid
- NP-40
Nonidet P-40
- PBS
phosphate-buffered saline
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- TyrS
tyrosine-O-sulfate 相似文献
5.
Fengmei Wang Min Xia Ying Liu Yuqing Chen Ming‐Hui Zhao 《Journal of cellular and molecular medicine》2016,20(10):1821-1828
Recent studies suggest that uromodulin plays an important role in chronic kidney diseases. It can interact with several complement components, various cytokines and immune system cells. Complement factor H (CFH), as a regulator of the complement alternative pathway, is also associated with various renal diseases. Thus, we have been suggested that uromodulin regulates complement activation by interacting with CFH during tubulointerstitial injury. We detected co‐localization of uromodulin and CFH in the renal tubules by using immunofluorescence. Next, we confirmed the binding of uromodulin with CFH in vitro and found that the affinity constant (KD) of uromodulin binding to CFH was 4.07 × 10?6M based on surface plasmon resonance results. The binding sites on CFH were defined as the short consensus repeat (SCR) units SCR1–4, SCR7 and SCR19–20. The uromodulin‐CFH interaction enhanced the cofactor activity of CFH for factor I‐mediated cleavage of C3b to iC3b. These results indicate that uromodulin plays a role via binding and enhancing the function of CFH. 相似文献
6.
A. J. Day J. Ripoche A. Lyons B. McIntosh T. J. R. Harris R. B. Sim 《Bioscience reports》1987,7(3):201-207
Peptide sequencing of the complement system regulatory protein, factor H, permitted the synthesis of a mixed sequence oligonucleotide probe. Human liver cDNA libraries were screened and factor H-specific clones selected. No full-length clone was obtained, but the largest available clone, R2a, was found to encode the C-terminal 657 amino acids of factor H. The derived amino acid sequence consists of 10 contiguous internally homologous segments, each about 60 amino acids long. Sequences homologous to these are found in several other complement and non-complement proteins. Such sequences are likely to represent a particular type of tertiary structure subunit. 相似文献
7.
Proteins of the complement system are known to interact with many charged substances. We recently characterized binding of C1q and factor H to immobilized and liposomal anionic phospholipids. Factor H inhibited C1q binding to anionic phospholipids, suggesting a role for factor H in regulating activation of the complement classical pathway by anionic phospholipids. To extend this finding, we examined interactions of C1q and factor H with lipid A, a well-characterized activator of the classical pathway. We report that C1q and factor H both bind to immobilized lipid A, lipid A liposomes and intact Escherichia coli TG1. Factor H competes with C1q for binding to these targets. Furthermore, increasing the factor H: C1q molar ratio in serum diminished C4b fixation, indicating that factor H diminishes classical pathway activation. The recombinant forms of the C-terminal, globular heads of C1q A, B and C chains bound to lipid A and E. coli in a manner qualitatively similar to native C1q, confirming that C1q interacts with these targets via its globular head region. These observations reinforce our proposal that factor H has an additional complement regulatory role of down-regulating classical pathway activation in response to certain targets. This is distinct from its role as an alternative pathway downregulator. We suggest that under physiological conditions, factor H may serve as a downregulator of bacterially-driven inflammatory responses, thereby fine-tuning and balancing the inflammatory response in infections with Gram-negative bacteria. 相似文献
8.
Alternative pathway amplification plays a major role for the final effect of initial specific activation of the classical and lectin complement pathways, but the quantitative role of the amplification is insufficiently investigated. In experimental models of human diseases in which a direct activation of alternative pathway has been assumed, this interpretation needs revision placing a greater role on alternative amplification. We recently documented that the alternative amplification contributed to 80-90% of C5 activation when the initial activation was highly specific for the classical pathway. The recent identification of properdin as a recognition factor directly initiating alternative pathway activation, like C1q in the classical and mannose-binding lectin in the lectin pathway initiates a renewed interest in the reaction mechanisms of complement. Complement and Toll-like receptors, including the CD14 molecule, are two main upstream recognition systems of innate immunity, contributing to the inflammatory reaction in a number of conditions including ischemia-reperfusion injury and sepsis. These systems act as "double-edged swords", being protective against microbial invasion, but harmful to the host when activated improperly or uncontrolled. Combined inhibition of complement and Toll-like receptors/CD14 should be explored as a treatment regimen to reduce the overwhelming damaging inflammatory response during sepsis. The alternative pathway should be particularly considered in this regard, due to its uncontrolled amplification in sepsis. The alternative pathway should be regarded as a dual system, namely a recognition pathway principally similar to the classical and lectin pathways, and an amplification mechanism, well known, but quantitatively probably more important than generally recognized. 相似文献
9.
Lufeng Bai Qiuyu Xie Min Xia Kunjing Gong Na Wang Yuqing Chen Minghui Zhao 《Journal of cellular and molecular medicine》2021,25(9):4316-4325
Uromodulin (UMOD) can bind complement factor H (cFH) and inhibit the activation of complement alternative pathway (AP) by enhancing the cofactor activity of cFH on degeneration of C3b. UMOD, an N-glycans-rich glycoprotein, is expressed in thick ascending limb of Henle's loop where the epithelia need to adapt to gradient change of pH and ion concentration. ELISA-based cofactor activity of cFH and erythrocytes haemolytic assay was used to measure the impact of native and de-glycosylated UMOD on the functions of cFH. The binding assay was performed under different pH and ion concentrations, using ELISA. The levels of sialic acid on UMOD, from healthy controls and patients with chronic kidney disease (CKD), were also detected by lectin-ELISA. It was shown that removal of glycans decreased the binding between UMOD and cFH and abolished the ability of enhancing C3b degradation. In acidic condition, the binding became stronger, but it reduced as sodium concentration increased. A significant decrease of α-2,3 sialic acids on UMOD was observed in CKD patients compared with that of healthy individuals. The sialic acids on UMOD, local pH and sodium concentration could impact the binding capacity between UMOD and cFH and thus regulate the activation of complement AP. 相似文献
10.
Structural stability and heat-induced conformational change of two complement inhibitors: C4b-binding protein and factor H 下载免费PDF全文
Kask L Villoutreix BO Steen M Ramesh B Dahlbäck B Blom AM 《Protein science : a publication of the Protein Society》2004,13(5):1356-1364
The complement inhibitors C4b-binding protein (C4BP) and factor H (FH) both consist of complement control protein (CCP) domains. Here we examined the secondary structure of both proteins by circular dichroism and Fourier-transform infrared technique at temperatures ranging from 30 degrees C-90 degrees C. We found that predominantly beta-sheet structure of both proteins was stable up to 70 degrees C, and that a reversible conformational change toward alpha-helix was apparent at temperatures ranging from 70 degrees C to 90 degrees C. The ability of both proteins to inhibit complement was not impaired after incubation at 95 degrees C, exposure to extreme pH conditions, and storage at room temperature for several months. Similar remarkable stability was previously observed for vaccinia virus control protein (VCP), which is also composed of CCP domains; it therefore seems to be a general property of CCP-containing proteins. A typical CCP domain has a hydrophobic core, which is wrapped in beta-sheets and stabilized by two disulphide bridges. How the CCP domains tolerate harsh conditions is unclear, but it could be due to a combination of high content of prolines, hydrophobic residues, and the presence of two disulphide bridges within each domain. These findings are of interest because CCP-containing complement inhibitors have been proposed as clinical agents to be used to control unwanted complement activation that contributes to many diseases. 相似文献
11.
Fernando AN Furtado PB Clark SJ Gilbert HE Day AJ Sim RB Perkins SJ 《Journal of molecular biology》2007,368(2):564-581
Factor H (FH) is a major complement control protein in serum. The seventh short complement regulator (SCR-7) domain of the 20 in FH is associated with age-related macular degeneration through a Tyr402His polymorphism. The recombinant SCR-6/8 domains containing either His402 or Tyr402 and their complexes with a heparin decasaccharide were studied by analytical ultracentrifugation and X-ray scattering. The sedimentation coefficient is concentration dependent, giving a value of 2.0 S at zero concentration and a frictional ratio f/f(o) of 1.2 for both allotypes. The His402 allotype showed a slightly greater self-association than the Tyr402 allotype, and small amounts of dimeric SCR-6/8 were found for both allotypes in 50 mM, 137 mM and 250 mM NaCl buffers. Sedimentation equilibrium data were interpreted in terms of a monomer-dimer equilibrium with a dissociation constant of 40 microM for the His402 form. The Guinier radius of gyration R(G) of 3.1-3.3 nm and the R(G)/R(O) ratio of 2.0-2.1 showed that SCR-6/8 is relatively extended in solution. The distance distribution function P(r) showed a maximum dimension of 10 nm, which is less than the length expected for a linear domain arrangement. The constrained scattering and sedimentation modelling of FH SCR-6/8 showed that bent SCR arrangements fit the data better than linear arrangements. Previously identified heparin-binding residues were exposed on the outside curvature of this bent domain structure. Heparin caused the formation of a more linear structure, possibly by binding to residues in the linker. It was concluded that the His402 allotype may self-associate more readily than the Tyr402 allotype, SCR-6/8 is partly responsible for the folded-back structure of intact FH, and SCR-6/8 changes conformation upon heparin binding. 相似文献
12.
MBL is a serum lectin that activates the lectin pathway of the complement system. MBL forms complexes with three types of MASPs. Upon binding to Salmonella serogroup C-specific oligosaccharide, MBL activates the alternative pathway via a C2-bypass pathway without involving MASP-2, C2 or C4. We demonstrate that mannan-bound MBL activates the alternative pathway via a C2-bypass pathway that requires MASP-2 and C4. Thus, depending on the ligands to which MBL binds, there may be two distinct MBL-mediated C2-bypass pathways. 相似文献
13.
Dennis V Pedersen Gregers R Andersen Dennis V Pedersen Lubka Roumenina Rasmus K Jensen Trine AF Gadeberg Chiara Marinozzi Capucine Picard Tania Rybkine Steffen Thiel Uffe BS Sørensen Cordula Stover Veronique Fremeaux-Bacchi Gregers R Andersen 《The EMBO journal》2017,36(8):1084-1099
Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement. 相似文献
14.
Complement proteins in blood recognize charged particles. The anionic phospholipid (aPL) cardiolipin binds both complement proteins C1q and factor H. C1q is an activator of the complement classical pathway, while factor H is an inhibitor of the alternative pathway. To examine opposing effects of C1q and factor H on complement activation by aPL, we surveyed C1q and factor H binding, and complement activation by aPL, either coated on microtitre plates or in liposomes. Both C1q and factor H bound to all aPL tested, and competed directly with each other for binding. All the aPL activated the complement classical pathway, but negligibly the alternative pathway, consistent with accepted roles of C1q and factor H. However, in this system, factor H, by competing directly with C1q for binding to aPL, acts as a direct regulator of the complement classical pathway. This regulatory mechanism is distinct from its action on the alternative pathway. Regulation of classical pathway activation by factor H was confirmed by measuring C4 activation by aPL in human sera in which the C1q:factor H molar ratio was adjusted over a wide range. Thus factor H, which is regarded as a down-regulator only of the alternative pathway, has a distinct role in downregulating activation of the classical complement pathway by aPL. A factor H homologue, β2-glycoprotein-1, also strongly inhibits C1q binding to cardiolipin. Recombinant globular domains of C1q A, B and C chains bound aPL similarly to native C1q, confirming that C1q binds aPL via its globular heads. 相似文献
15.
Elizabeth Rodriguez Pavithra?M. Rallapalli Amy J. Osborne Stephen?J. Perkins 《Bioscience reports》2014,34(5)
aHUS (atypical haemolytic uraemic syndrome), AMD (age-related macular degeneration) and other diseases are associated with defective AP (alternative pathway) regulation. CFH (complement factor H), CFI (complement factor I), MCP (membrane cofactor protein) and C3 exhibited the most disease-associated genetic alterations in the AP. Our interactive structural database for these was updated with a total of 324 genetic alterations. A consensus structure for the SCR (short complement regulator) domain showed that the majority (37%) of SCR mutations occurred at its hypervariable loop and its four conserved Cys residues. Mapping 113 missense mutations onto the CFH structure showed that over half occurred in the C-terminal domains SCR-15 to -20. In particular, SCR-20 with the highest total of affected residues is associated with binding to C3d and heparin-like oligosaccharides. No clustering of 49 missense mutations in CFI was seen. In MCP, SCR-3 was the most affected by 23 missense mutations. In C3, the neighbouring thioester and MG (macroglobulin) domains exhibited most of 47 missense mutations. The mutations in the regulators CFH, CFI and MCP involve loss-of-function, whereas those for C3 involve gain-of-function. This combined update emphasizes the importance of the complement AP in inflammatory disease, clarifies the functionally important regions in these proteins, and will facilitate diagnosis and therapy. 相似文献
16.
Background
An increasing body of studies has assessed the contribution of Val62Ile polymorphism to age-related macular degeneration (AMD) risk, but the exact association still remains uncertain. This meta-analysis was undertaken in order to further characterize the potential association between Val62Ile polymorphism and AMD risk in four different ethnic populations.Methods
A meta-analysis was performed using data available from 16 case–control studies evaluating correlation between the Val62Ile polymorphism and AMD in Caucasian, Chinese, Japanese and South Korean populations. Data extraction and study quality assessment were performed in duplicate. Summary odds ratios (ORs) and 95% confidence intervals (CIs) of allele contrast and genotype contrast were estimated using the random-effects model. The Q-statistic test was used to identify heterogeneity, and the funnel plot was adopted to evaluate publication bias.Results
Sixteen studies involving a total of 11,400 subjects based on the search criteria were included in the meta-analysis. In overall populations, the Val62Ile polymorphism seemed to be associated with AMD (ORAA vs. GG = 0.40, 95% CI = 0.28–0.59; ORAA + GA vs. GG = 0.72, 95% CI = 0.64–0.80; ORAA vs. GC + GG = 0.50, 95% CI = 0.36–0.70; ORA vs. G = 0.68, 95% CI = 0.58–0.78; ORGA vs. GG = 0.71, 95% CI = 0.65–0.77). Similarly, subgroup analysis also revealed that this polymorphism was related to AMD in all ethnicities.Conclusions
This meta-analysis suggested that Val62Ile polymorphism was associated with susceptibility to AMD. 相似文献17.
Annette Büttner‐Mainik Juliana Parsons Hanna Jérôme Andrea Hartmann Stephanie Lamer Andreas Schlosser Peter F. Zipfel Ralf Reski Eva L. Decker 《Plant biotechnology journal》2011,9(3):373-383
The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age‐related macular degeneration (AMD). There is a current need to apply intact full‐length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full‐length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal‐derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss‐derived secretion signal. Correct processing of the signal peptide and integrity of the moss‐produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. 相似文献
18.
Factor H is a major regulatory protein of the complement system. The complete cDNA coding sequence has been derived from overlapping clones, and a polymorphism at base 1277 has been characterized. In four clones there is a T at nucleotide 1277 and in two others there is a C. This T/C change represents a tyrosine/histidine polymorphism at position 384 in the derived amino acid sequence. Protein sequence studies on peptides generated by trypsin digestion of factor H, purified from pooled plasma from 12 donors, confirmed the presence of both tyrosine and histidine at this position. Tyrosine and histidine were observed in a ratio of 2 : 1, respectively, and therefore this polymorphism is likely to represent a sequence difference between the two most abundant charge variants, FH1 and FH2, of factor H. 相似文献
19.
Jitendra Kumar Saurabh Dhyani Prateek Kumar Nishi Raj Sharma Surajit Ganguly 《The Journal of biological chemistry》2023,299(3)
Hyperactivation of the complement system, a major component of innate immunity, has been recognized as one of the core clinical features in severe covid-19 patients. However, how the virus escapes the targeted elimination by the network of activated complement pathways still remains an enigma. Here, we identified SARS-CoV-2–encoded ORF8 protein as one of the major binding partners of human complement C3/C3b components and their metabolites. Our results demonstrated that preincubation of ORF8 with C3/C3b in the fluid phase has two immediate functional consequences in the alternative pathway; this preincubation inhibits factor I–mediated proteolysis and blocks factor B zymogen activation into active Bb. ORF8 binding results in the occlusion of both factor H and factor B from C3b, rendering the complexes resistant to factor I–mediated proteolysis and inhibition of pro-C3-convertase (C3bB) formation, respectively. We also confirmed the complement inhibitory activity of ORF8 in our hemolysis-based assay, where ORF8 prevented human serum–induced lysis of rabbit erythrocytes with an IC50 value of about 2.3 μM. This inhibitory characteristic of ORF8 was also supported by in-silico protein-protein docking analysis, as it appeared to establish primary interactions with the β-chain of C3b, orienting itself near the C3b CUB (C1r/C1s, Uegf, Bmp1) domain like a peptidomimetic compound, sterically hindering the binding of essential cofactors required for complement amplification. Thus, ORF8 has characteristics to act as an inhibitor of critical regulatory steps in the alternative pathway, converging to hasten the decay of C3-convertase and thereby, attenuating the complement amplification loop. 相似文献
20.
Nishio N Teranishi M Uchida Y Sugiura S Ando F Shimokata H Sone M Otake H Kato K Yoshida T Tagaya M Hibi T Nakashima T 《Gene》2012,499(1):226-230
Sudden sensorineural hearing loss (SSNHL) is one of the most common diseases encountered by otolaryngologists; however, the etiology is unclear. The aim of this study was to assess the association between SSNHL and polymorphism of complement factor H (CFH) Y402H, which is implicated in age-related macular degeneration. We conducted a case-control study, in which the cases were 72 SSNHL patients and the controls were 2161 residents selected randomly from the resident register. The odds ratio (OR) for SSNHL risk was determined using the additive-genetic model of CFH Y402H polymorphism. The OR for SSNHL risk was 1.788 (95% confidence interval [CI]: 1.008-3.172) with no adjustments and 1.820 (CI: 1.025-3.232) after adjusting for age and sex. Of the three lifestyle-related diseases hypertension, dyslipidemia, and diabetes, only diabetes was significantly associated with SSNHL risk. We classified both the controls and SSNHL patients into those with or without diabetes, and the OR for SSNHL risk was 6.326 (CI: 1.885-21.225) in diabetic subjects and 1.214 (CI: 0.581-2.538) in nondiabetic subjects. We conclude that CFH Y402H polymorphism and SSNHL risk are significantly related, and that diabetic CFH Y402H minor allele carriers may be susceptible to SSNHL. 相似文献