首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using synthetic oligodeoxyribonucleic acid probes we have identified and isolated COX6, the structural gene for subunit VI of cytochrome c oxidase from Saccharomyces cerevisiae. The nucleotide sequence of COX6 predicts an amino acid sequence, for the mature subunit VI polypeptide, which is in perfect agreement with that determined previously. The nucleotide sequence of COX6 also predicts that subunit VI is derived from a precursor with a highly basic 40-amino acid NH2-terminal presequence. This precursor has been observed after in vitro translations programmed by yeast poly(A+)RNA. Northern blot analysis of poly(A+) RNA from strain D273-10B reveals that COX6 is homologous to three RNAs of 1800, 900, and 700 bases in length. By means of Southern blot analysis, the cloned gene was shown to be co-linear with yeast chromosomal DNA and to exist in a single copy in the yeast genome. An additional open reading frame, consisting of 82 codons, terminates 22 codons upstream from COX6. It is "in frame" with the COX6 coding region.  相似文献   

2.
3.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
6.
7.
The complete amino acid sequence of the nuclearly coded cytochrome c oxidase subunit VI was determined for a genetically defined haploid strain of Saccharomyces cerevisiae. The subunit contains 108 amino acids, has Mr = 12,627, is acidic (net charge of -9.7 at pH 7) and is quite polar (polarity index, 50.9%). Distribution of charges within the polypeptide chain is highly non-random. The NH2- and COOH-terminal regions are predominantly acidic whereas an apolar and a basic region are found in the interior, Subunit VI shows between 28 and 40% sequence homology (depending on the method of alignment) with subunit V of bovine cytochrome c oxidase; since the yeast subunit VI lacks methionine and contains only a single histidine residue very close to the NH2 terminus, it is unlikely that either of the two subunits carries heme alpha in the native enzyme.  相似文献   

8.
Three mitochondrial DNA–encoded proteins, Cox1, Cox2, and Cox3, comprise the core of the cytochrome c oxidase complex. Gene-specific translational activators ensure that these respiratory chain subunits are synthesized at the correct location and in stoichiometric ratios to prevent unassembled protein products from generating free oxygen radicals. In the yeast Saccharomyces cerevisiae, the nuclear-encoded proteins Mss51 and Pet309 specifically activate mitochondrial translation of the largest subunit, Cox1. Here we report that Mam33 is a third COX1 translational activator in yeast mitochondria. Mam33 is required for cells to adapt efficiently from fermentation to respiration. In the absence of Mam33, Cox1 translation is impaired, and cells poorly adapt to respiratory conditions because they lack basal fermentative levels of Cox1.  相似文献   

9.
Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX(9)C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.  相似文献   

10.
A nuclear gene (QCR9) encoding the 7.3-kDa subunit 9 of the mitochondrial cytochrome bc1 complex from Saccharomyces cerevisiae has been isolated from a yeast genomic library by hybridization with a degenerate oligonucleotide corresponding to nine amino acids proximal to the N terminus of purified subunit 9. QCR9 includes a 195-base pair open reading frame capable of encoding a protein of 66 amino acids and having a predicted molecular weight of 7471. The N-terminal methionine of subunit 9 is removed posttranslationally because the N-terminal sequence of the purified protein begins with serine 2. The ATG triplet corresponding to the N-terminal methionine is separated from the open reading frame by an intron. The intron is 213 base pairs long and contains previously reported 5' donor, 3' acceptor, and TACTAAC sequences necessary for splicing. The splice junctions, as well as the 5' end of the message, were confirmed by isolation and sequencing of a cDNA copy of QCR9. In addition, the intron contains a nucleotide sequence in which 15 out of 18 nucleotides are identical with a sequence in the intron of COX4, the nuclear gene encoding cytochrome c oxidase subunit 4. The deduced amino acid sequence of the yeast subunit 9 is 39% identical with that of a protein of similar molecular weight from beef heart cytochrome bc1 complex. If conservative substitutions are allowed for, the two proteins are 56% similar. The predicted secondary structure of the 7.3-kDa protein revealed a single possible transmembrane helix, in which the amino acids conserved between beef heart and yeast are asymmetrically arranged along one face of the helix, implying that this domain of the protein is involved in a conserved interaction with another hydrophobic protein of the cytochrome bc1 complex. Two yeast strains, JDP1 and JDP2, were constructed in which QCR9 was deleted. Both strains grew very poorly, or not at all, on nonfermentable carbon sources and exhibited, at most, only 5% of wild-type ubiquinol-cytochrome c oxidoreductase activity. Optical spectra of mitochondrial membranes from the deletion strains revealed slightly reduced levels of cytochrome b. When JDP1 and JDP2 were complemented with a plasmid carrying QCR9, the resulting yeast grew normally on ethanol/glycerol and exhibited normal cytochrome c reductase activities and optical spectra. These results indicate that QCR9 encodes a 7.3-kDa subunit of the bc1 complex that is required for formation of a fully functional complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The nuclear gene COX5 coding for subunit 5 of cytochrome oxidase has been cloned by transformation of the cox5-1 mutant aE4-238/AL1 with a library of yeast genomic DNA. The recombinant plasmid pG46/ST2 bearing a nuclear DNA insert of 1.17 kilobase pairs restores the ability of cox5 mutants to respire and to synthesize a wild type subunit 5. The COX5 gene has been sequenced and determined to code for a 153-amino acid long protein with a molecular weight of 17,121. The amino-terminal 20 residues comprise the signal peptide. The sequence starting from residue 21 matches the partial sequence reported for the mature subunit 5. The sequence of the subunit 5 gene indicates that the mature protein has a molecular weight of 14,858 which agrees with previous size estimates based on electrophoretic migration. The primary sequence and polarity profile of yeast subunit 5 establishes that it is homologous to subunit 4 of bovine cytochrome oxidase.  相似文献   

12.
13.
Two-dimensional electrophoretic analysis of the mitochondrial translation products of four mit-mutants indicate that subunit III of cytochrome oxidase is the only mitochondrial translation product affected by mutations in the oxi2 region of the mtDNA. Mitochondria of two of these mutants synthesize new products which coprecipitate with an anticytochrome oxidase antiserum and produce proteolytic digests similar to those of subunit III of the enzyme complex. These data strongly support the suggestion that the oxi2 region of the yeast mtDNA contains the structural gene of subunit III of cytochrome oxidase.  相似文献   

14.
We have characterized Cox16p, a new cytochrome oxidase (COX) assembly factor. This protein is encoded by COX16, corresponding to the previously uncharacterized open reading frame YJL003w of the yeast genome. COX16 was identified in studies of COX-deficient mutants previously assigned to complementation group G22 of a collection of yeast pet mutants. To determine its location, Cox16p was tagged with a Myc epitope at the C terminus. The fusion protein, when expressed from a low-copy plasmid, complements the mutant and is detected solely in mitochondria. Cox16p-myc is an integral component of the mitochondrial inner membrane, with its C terminus exposed to the intermembrane space. Cox16 homologues are found in both the human and murine genomes, although human COX16 does not complement the yeast mutant. Cox16p does not appear to be involved in maturation of subunit 2, copper recruitment, or heme A biosynthesis. Cox16p is thus a new protein in the growing family of eukaryotic COX assembly factors for which there are as yet no specific functions known. Like other recently described nuclear gene products involved in expression of cytochrome oxidase, COX16 is a candidate for screening in inherited human COX deficiencies.  相似文献   

15.
16.
The COX7A1 gene encodes a heart- and muscle-specific isoform of the subunit VIIA of cytochrome c oxidase, which is the last component of the mitochondrial electron transfer chain. Cloning and characterization of the porcine COX7A1 gene revealed a highly conserved organization with respect to other mammalian COX7A1 orthologs. The porcine gene consists of four exons spanning approximately 1.5 kb and codes for a peptide of 80 amino acids. The COX7A1 gene showed no variation between pigs from different breeds. The gene was assigned by FISH and RH-mapping to SSC 6q1.1-->q1.2 which is in agreement with previously established comparative maps.  相似文献   

17.
The COX6 gene encodes subunit VI of cytochrome c oxidase. Previously, this gene and its mRNAs were characterized, and its expression has been shown to be subject to glucose repression/derepression. In this study we have examined the effects of heme and the HAP1 (CYP1) and HAP2 genes on the expression of COX6. By quantitating COX6 RNA levels and assaying beta-galactosidase activity in yeast cells carrying COX6-lacZ fusion genes, we have found that COX6 is regulated positively by heme and HAP2, but is unaffected by HAP1. Through 5' deletion analysis we have also found that the effects of heme and HAP2 on COX6 are mediated by sequences between 135 and 590 base pairs upstream of its initiation codon. These findings identify COX6 as the fourth respiratory protein gene that is known to be regulated positively by heme and HAP2. The other three, CYC1, COX4, and COX5a, encode iso-1-cytochrome c, cytochrome c oxidase subunit IV, and an isolog, Va, of cytochrome c oxidase subunit V, respectively. Thus, it appears that the biogenesis of two interacting proteins, cytochrome c and cytochrome c oxidase, in the mitochondrial respiratory chain, are under the control of common factors.  相似文献   

18.
19.
20.
Dramatically elevated levels of the COX2 mitochondrial mRNA-specific translational activator protein Pet111p interfere with respiratory growth and cytochrome c oxidase accumulation. The respiratory phenotype appears to be caused primarily by inhibition of the COX1 mitochondrial mRNA translation, a finding confirmed by lack of cox1Delta::ARG8(m) reporter mRNA translation. Interference with Cox1p synthesis depends to a limited extent upon increased translation of the COX2 mRNA, but is largely independent of it. Respiratory growth is partially restored by a chimeric COX1 mRNA bearing the untranslated regions of the COX2 mRNA, and by overproduction of the COX1 mRNA-specific activators, Pet309p and Mss51p. These results suggest that excess Pet111p interacts unproductively with factors required for normal COX1 mRNA translation. Certain missense mutations in PET111 alleviate the interference with COX1 mRNA translation but do not completely restore normal respiratory growth in strains overproducing Pet111p, suggesting that elevated Pet111p also perturbs assembly of newly synthesized subunits into active cytochrome c oxidase. Thus, this severe imbalance in translational activator levels appears to cause multiple problems in mitochondrial gene expression, reflecting the dual role of balanced translational activators in cooperatively regulating both the levels and locations of organellar translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号