首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenes included in genomic-type constructs, such as yeast artificial chromosomes (YAC), P1-derived artificial chromosomes, or bacterial artificial chromosomes (BAC), are normally correctly expressed, according to the endogenous expression pattern of the homologous locus, because their large size usually ensures the inclusion of all regulatory elements required for proper gene expression. The use of these large genomic-type transgenes is therefore the method of choice to overcome most position effects, commonly associated with standard-type transgenes, and to guarantee the faithful transgene expression. However, in spite of the different methods available, including pronuclear microinjection and the use of embryonic stem cells as vehicles for genomic transgenes, the generation of transgenic animals with BACs and, particularly, with YACs can be demanding, because of the low efficiencies requiring extensive microinjection sessions and/or higher number of oocytes. Recently, we have explored the use of intracytoplasmic sperm injection (ICSI) into metaphase II oocytes as an alternative method for the generation of YAC transgenic mice. Our results suggest that the use of transgenic strategies based on ICSI significantly enhances the efficiency of YAC transgenesis by at least one order of magnitude.  相似文献   

2.
Intracytoplasmic sperm injection (ICSI) of DNA-loaded sperm cells has been shown to be a valuable tool for the production of transgenic animals, especially when DNA constructs with submegabase magnitude are used. In order to optimize and to understand the mechanism of the ICSI-mediated transgenesis, we have evaluated the impact of transgene DNA concentration, transgene flanking with nuclear matrix attachment regions (MARs), and the use of recombinase A (RecA)-coated DNA on the efficiency of mouse transgenesis production by ICSI. Presented data include assays with three DNA constructs; an enhanced green fluorescent protein (EGFP) plasmid of 5.4 kb, this plasmid flanked with two MAR elements (2.3 Kb of the human beta-interferon domain boundaries), and a yeast artificial chromosome (YAC) construct of ~510 kb (the largest transgenic construct introduced by ICSI that we have seen reported). ICSI-mediated transgenesis was done in the B6D2 mouse strain using different concentrations for each construct. Analysis of generated data indicated that ICSI allows the use of higher DNA concentrations than the ones used for pronuclear microinjection, however, when a certain threshold is exceeded, embryo/fetal viability decrease dramatically. In addition, independently of the transgene concentration tested, transgene flanking with MAR sequences did not have a significant impact on the efficiency of this transgenesis method. Finally, we observed that although the overall efficiency of ICSI-mediated transgenesis with fresh spermatozoa and RecA-complexed DNA was similar to the one obtained with the common ICSI-mediated transgenesis approach with frozen-thawed spermatozoa and RecA free DNA, this method was not as efficient in maintaining a low frequency of founder animal mosaicism, suggesting that different mechanisms of transgene integration might result from each procedure.  相似文献   

3.
Transgenesis using large DNA such as YAC or BAC has extended the range of applications in functional genomics. Here we describe an efficient BAC transgenesis protocol using a simple BAC DNA preparation method adopted from YAC DNA purification methods. This method allowed us to isolate BAC DNA from small scale culture of BAC-containing cells in sufficient quantity and purity for microinjection. More than 40 founders have been produced with linearized BAC DNA prepared by this method, and 85% of them contained intact BAC transgenes. In contrast, when circular BAC DNA was injected, an approximately three-fold reduction of transgene integration rate was observed and fewer intact transgene integrations were obtained. A line of transgenic mice carrying a 170-kb BAC clone generated in this way successfully rescued tail and embryonic lethality phenotypes of the mouse Brachyury (T) mutants, further demonstrating the utility of this method in functional analysis of the mouse genome.  相似文献   

4.
The position effect is one major problem in the production of transgenic animals as mammary gland bioreactors. In the present study, we introduced the human growth hormone (hGH) gene into 210-kb human alpha-lactalbumin position-independent YAC vectors using homologous recombination and produced transgenic rats via microinjection of YAC DNA into rat embryos. The efficiency of producing transgenic rats with the YAC vector DNA was the same as that using plasmid constructs. All analyzed transgenic rats had one copy of the transgene and produced milk containing a high level of hGH (0.25-8.9 mg/ml). In transgenic rats with the YAC vector in which the human alpha-lactalbumin gene was replaced with the hGH gene, tissue specificity of hGH mRNA was the same as that of the endogenous rat alpha-lactalbumin gene. Thus, the 210-kb human alpha-lactalbumin YAC is a useful vector for high-level expression of foreign genes in the milk of transgenic animals.  相似文献   

5.
The generation of transgenic mice with mammalian genes cloned in yeast artificial chromosomes (YACs) has generated great interest in the field of gene transfer into livestock. Many of the problems associated with standard transgenesis—such as lack of crucial regulator elements and position effects related to the integration site, which lead to variation in expression levels irrespective of the dose of the transgene—have been practically overcome. The large size of YAC-derived gene constructs (in excess of 1 Mb) facilitates the presence and transfer of all elements required for the faithful regulation of a gene. With the experiments discussed in this report, we have addressed the possibility of applying the obvious advantages of YAC transgenesis to farm animals. We have generated transgenic rabbits carrying a 250 kb YAC covering the mouse tyrosinase gene by pronuclear microinjection, and thus rescued the albino phenotype of the transgenic individuals. To date, this is the first demonstration of a successful transfer of large genetic units into the germ line of farm animals. This development might improve the occurrence of transgene expression at physiological levels and specific sites in livestock. YAC transgenesis therefore will be applied in genetic engineering, for example, in the production of pharmacologically interesting proteins encoded by large gene units and generating transgenic donors for xenotransplantation. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Understanding the behavior of transgenes introduced into oocytes or embryos is essential for evaluating the methodologies for transgenic animal production. We investigated the expression pattern of a transgene transferred to porcine eggs by intracytoplasmic sperm injection‐mediated gene transfer (ICSI‐MGT) or pronuclear microinjection (PN injection). The introduction of the EGFP gene by ICSI‐MGT yielded significantly more embryos with non‐mosaic transgene expression (P < 0.01). In the ICSI‐MGT group, 61.5% (24/39) of the embryos were EGFP‐positive in all their component blastomeres at the morula stage, while fewer than 10% of such embryos were EGFP‐positive in the PN‐injection group. Using three types of transgenes, ranging from 3.0 to 7.5 kb in size, we confirmed that approximately one in four fetuses obtained by ICSI‐MGT was transgenic, suggesting that ICSI‐MGT is a practical method for transgenic pig production. Southern blot analysis of 12 transgenic fetuses produced by ICSI‐MGT revealed that the number of integrated transgene copies varied from 1 to 300, with no correlation between transgene size and the number of integrated copies. Fluorescence in situ hybridization analysis revealed that the transgenes were randomly integrated into a single site on the host chromosomes. Together, these data indicate that multiple‐copy, single‐site integration of a transgene is the primary outcome of ICSI‐MGT in the pig and that ICSI‐MGT is less likely than PN injection to cause transgene integration in a mosaic manner. Mol. Reprod. Dev. 79: 218–228, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Size Matters: Use of YACs,BACs and PACs in Transgenic Animals   总被引:15,自引:0,他引:15  
In 1993, several groups, working independently, reported the successful generation of transgenic mice with yeast artificial chromosomes (YACs) using standard techniques. The transfer of these large fragments of cloned genomic DNA correlated with optimal expression levels of the transgenes, irrespective of their location in the host genome. Thereafter, other groups confirmed the advantages of YAC transgenesis and position-independent and copy number-dependent transgene expression were demonstrated in most cases. The transfer of YACs to the germ line of mice has become popular in many transgenic facilities to guarantee faithful expression of transgenes. This technique was rapidly exported to livestock and soon transgenic rabbits, pigs and other mammals were produced with YACs. Transgenic animals were also produced with bacterial or P1-derived artificial chromosomes (BACs/PACs) with similar success. The use of YACs, BACs and PACs in transgenesis has allowed the discovery of new genes by complementation of mutations, the identification of key regulatory sequences within genomic loci that are crucial for the proper expression of genes and the design of improved animal models of human genetic diseases. Transgenesis with artificial chromosomes has proven useful in a variety of biological, medical and biotechnological applications and is considered a major breakthrough in the generation of transgenic animals. In this report, we will review the recent history of YAC/BAC/PAC-transgenic animals indicating their benefits and the potential problems associated with them. In this new era of genomics, the generation and analysis of transgenic animals carrying artificial chromosome-type transgenes will be fundamental to functionally identify and understand the role of new genes, included within large pieces of genomes, by direct complementation of mutations or by observation of their phenotypic consequences.  相似文献   

8.
The aim of the present study was to investigate differences in the methods for preparing a large DNA fragment to be used for making transgenic rats from the standpoint of transgenic production efficiency and integrity of the introduced gene. In yeast artificial chromosome (YAC) transgenesis, three methods for preparing DNA for microinjection were compared: amplification of YAC in yeast (AMP), amplification of YAC in yeast and removal of the amplification element (AMP/RE), and no amplification of the YAC in yeast (AMP-). Production efficiency per microinjected ovum with DNA by the AMP method was four times higher than that by the AMP/RE and AMP-. Based on these results, we favor the AMP method in spite of the thymidine kinase gene-induced male sterility. In bacterial artificial chromosome (BAC) transgenesis, linear DNA fragments for microinjection prepared by three kinds of purification procedures were compared: Not I digestion and CsCl gradient ultra-centrifugation (Prep. 1), CsCl gradient ultra-centrifugation, Not I digestion, gel electrophoresis, and beta-agarase digestion (Prep. 2), and CsCl gradient ultra-centrifugation, Not I digestion, pulse field gel electrophoresis, and beta-agarase digestion (Prep. 3). Although the efficiency of producing transgenic rats was similar with all these three DNA preparations, integration of the intact DNA fragment only occurred with the Prep. 3 procedure. We therefore favor the Prep. 3 method for preparing BAC DNA fragments. These results indicate that the method used to prepare a large DNA fragment such as YAC and BAC DNAs is important in order to produce transgenic rats with an intact transgene.  相似文献   

9.
In relation to the growing recent interest in the establishment of sperm‐mediated gene transfer (SMGT) technology as a convenient and effective method for the simple production of transgenic animals, in this study the possibility of using SMGT to produce transgenic caprine embryos was investigated for the first time. Buck sperm were directly incubated with different concentrations (0–500 ng) of pcDNA/his/Lac‐Z plasmid and used for IVF or ICSI. Sperm used for ICSI were categorized into motile or live‐immotile group before being injected into oocytes. In a separate experiment, dead sperm prepared by repeated freezing/thawing were used for DNA‐incubation before ICSI. Sham injection was carried out by intracytoplasmic injection of approximately the same volume of media containing different doses of DNA using an ICSI needle. Transgene expression and transmission were detected by X‐Gal staining and PCR analysis of developed embryos, respectively. A reasonable blastocyst rate was observed in all the groups. Only embryos in the sham group were negative for transgene transmission. Transgene expression was completely dependent on the delivery technique and status of sperm, and was only observed in the live‐immotile and dead ICSI groups. The results of this study showed that the technique (IVF vs. ICSI vs. sham injection), sperm status (motile vs. live‐immotile vs. dead) and to some extent DNA concentration affect embryo development, transgene transmission and expression. Mol. Reprod. Dev. 77:868–875, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Lentiviral based constructs represent a recent development in the generation of transgenic animals. The ease of use, and the fact that the same backbone vectors can be used to down-modulate endogenous gene expression and to produce transgenic animals overexpressing a gene of interest, have fuelled growing interest in this technology. In this study, we have used a lentiviral delivery system to generate transgenic mice expressing altered levels (up or downregulated) of a gene of interest. Although this lentiviral-based approach led to high levels of transgenesis and germ line transmission, a wide variation in transgene expression was observed in most first and second generation mouse lines. In particular, despite the segregation of integrants into single-copy expressing mouse lines, transgene expression appeared to be the target of epigenetic regulatory mechanism, often causing the coexistence of high and low transgene expressing cells within a given tissue such as blood peripheral lymphocytes. The establishment and analysis of large number of mouse lines may therefore be required to select a stable transgenic line with pancellular expression of a gene of interest using this lentiviral-based approach.  相似文献   

11.
Zawaski C  Kadmiel M  Pickens J  Ma C  Strauss S  Busov V 《Planta》2011,234(6):1285-1298
We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.  相似文献   

12.
13.
Steroidogenic factor 1 (SF-1/Nr5a1) is an orphan nuclear receptor encoded by the Ftz-F1 gene and is required for gonad and adrenal development and regulation of hormone production within the reproductive and adrenal axes. To extend our understanding of Ftz-F1 and its role in SF-1 expression, we identified and characterized a yeast artificial chromosome (YAC) containing Ftz-F1. Within this YAC, Ftz-F1 is centrally located and flanked by genes encoding a second orphan nuclear receptor, germ cell nuclear factor, and proteasome (prosome, macropain) subunit beta type 7. Three lines of transgenic mice carrying the YAC were generated and in two lines (lines 7 and 14), RT-PCR and ribonuclease protection analysis showed that expression of transgenic SF-1 mimicked that of endogenous SF-1, both spatially and quantitatively. In the third line (line 15), pituitary and hypothalamic expression were absent. Comparison of the integrated transgenes revealed that line 15 was truncated at the end of intron 4 and revealed a region within the locus that is responsible for SF-1 expression in the pituitary and hypothalamus. The line 14 transgene was introduced into a mouse strain lacking functional SF-1. Examination of SF-1-deficient, transgene-positive mice revealed that the YAC was able to rescue adrenal and gonad development, which normally arrests in the SF-1-null embryos and showed that the 153-kb transgene integrated in line 14 is sufficient to properly direct SF-1 expression and support its biological activity. Thus, the study defines a region of Ftz-F1 that contains the requisite set of regulatory elements to direct SF-1 cell-specific expression and all temporal and quantitative changes need for its biological activity.  相似文献   

14.
We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based docking vector harbouring a selection gene, an eGFP reporter gene, and an Flp recombinase site for locus-directed gene insertion. PFV cells have insertion of a single docking vector with stable eGFP expression and generated phenotypic normal blastocysts with transgene expression after somatic cell nuclear transfer. PFV cells supported Flp mediated cassette exchange for transgene substitution of eGFP with dsRED, and the dsRED transgenic PFV cells generated blastocysts with transgene expression. Hence, the PFV cell line constitutes a valuable pig equivalent to transformed cell lines from other mammalian species suitable for locus-directed transgene expression in cell cultures and, in addition, for transgene analyses in the very early embryonic stages.  相似文献   

15.
CRISPR/Cas9-mediated targeted gene integration (TI) has been used to generate recombinant mammalian cell lines with predictable transgene expression. Identifying genomic hot spots that render high and stable transgene expression and knock-in (KI) efficiency is critical for fully implementing TI-mediated cell line development (CLD); however, such identification is cumbersome. In this study, we developed an artificial KI construct that can be used as a hot spot at different genomic loci. The ubiquitous chromatin opening element (UCOE) was employed because of its ability to open chromatin and enable stable and site-independent transgene expression. UCOE KI cassettes were randomly integrated into CHO-K1 and HEK293T cells, followed by TI of enhanced green fluorescent protein (EGFP) onto the artificial UCOE KI site. The CHO-K1 random pool harboring 5′2.2A2UCOE-CMV displayed a significant increase in EGFP expression level and KI efficiency compared with that of the control without UCOE. In addition, 5′2.2A2UCOE-CMV showed improved Cas9 accessibility in the HEK293T genome, leading to an increase in indel frequency and homology-independent KI. Overall, this assessment revealed the potential of UCOE KI constructs as artificial integration sites in streamlining the screening of high-production targeted integrants by mitigating the selection of genomic hot spots.  相似文献   

16.
In order to inhibit gene expression in Entamoeba histolytica, we have developed a method based on expressing double strand RNA interference constructs in stable transformants. The 5' end of Eh Dia was cloned head to head with an intervening non-specific stuffer fragment in the E. histolytica expression vector pJST4. This construct was transformed in E. histolytica HM1:IMSS trophozoites and stable transformants were selected with 20microg/ml G418. Our results show that expression of Eh Dia was completely inhibited in these transformants. These stable transformants could be maintained indefinitely without expression of Eh Dia. This method therefore provides an effective tool to study the phenotypic changes, which occur due to inhibition of gene expression in the absence of mutants and other microbiological manipulations in this protozoan parasite.  相似文献   

17.
Citrus species accumulate large quantities of flavanone glycosides in their leaves and fruit. The physiological role(s) of these compounds in citrus plants are unknown, but they have been documented to benefit human health upon consumption. Flavanone rutinosides are tasteless, whereas flavanone neohesperidosides, such as naringin, give a bitter taste to fruit and fruit juice products, reducing their palatability. In an effort to alter the types and levels of flavanone neohesperidosides in citrus, an Agrobacterium -mediated genetic transformation approach was employed. Citrus paradisi Macf. (grapefruit) epicotyl stem segments were transformed with sense (S) and antisense (AS) constructs of the target genes chalcone synthase (CHS) and chalcone isomerase (CHI), whose products catalyze the first two steps in the flavonoid biosynthetic pathway. Transformation with each of the individual constructs led to a different and unpredictable combination of viability, phenotypic change, transgene steady-state expression and alteration in flavonoid content in the resulting transgenic plants. These qualities were consistent within the transgenic plants obtained using any particular construct. Transgenic plants with decreased leaf naringin levels were obtained, particularly when the CHS-AS constructs were employed.  相似文献   

18.
19.
Human artificial chromosomes (HACs) behave as independent minichromosomes and are potentially useful as a way to achieve safe, long-term expression of a transgene. In this study, we sought to elucidate the potential of HAC vectors carrying the human proinsulin transgene for gene therapy of insulin-dependent diabetes mellitus (IDDM) using non-beta-cells as a host for the vector. To facilitate the production of mature insulin in non-beta-cells and to safely regulate the level of transgene expression, we introduced furin-cleavable sites into the proinsulin coding region and utilized the heat shock protein 70 (Hsp70) promoter. We used Cre-loxP-mediated recombination to introduce the gene cassettes onto 21DeltapqHAC, a HAC vector whose structure is completely defined, present in human fibrosarcoma HT1080 cells. We observed long-term expression and stable retention of the transgene without aberrant translocation of the HAC constructs. As expected, the Hsp70 promoter allowed us to regulate gene expression with temperature, and the production and secretion of intermediates of mature insulin were made possible by the furin-cleavable sites we had introduced into proinsulin. This study can be an initial step on the application of HAC vectors on the gene delivery to non-beta-cells, which might provide a direction for future treatment for diabetes.  相似文献   

20.
Tobacco plants have been developed which constitutively express high levels of the biotin-binding proteins, avidin and streptavidin. These plants were phenotypically normal and produced fertile pollen and seeds. The transgene was expressed and its product located in the vacuoles of most cell types in the plants. Targeting was achieved by use of N-terminal vacuolar targeting sequences derived from potato proteinase inhibitors which are known to target constitutively to vacuoles in potato tubers and, under wound-induction, in tomato leaves. Avidin was located in protein body-like structures within the vacuole and transgene protein levels remained relatively constant throughout the lifetime of the leaf. We describe two chimeric constructs with similar levels of expression. One comprised a potato proteinase inhibitor I signal peptide cDNA sequence attached to an avidin cDNA and the second a potato proteinase inhibitor II signal peptide genomic sequence (including an intron) attached to a core streptavidin synthetic sequence. We were unable to regenerate plants when transformation used constructs lacking the targeting sequences. The highest levels observed (up to 1.5% of total leaf protein) confirm the vacuole as the organelle of choice for stable storage of plant-toxic transgene products. The efficient targeting of these proteins did not result in any measured changes in plant biotinmetabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号