首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present the first comprehensive analysis of the crocodilian control region. We have analyzed sequences from all three families of Crocodylia (Crocodylidae, Gavialidae, Alligatoridae), incorporating all genera except Paleosuchus and Melanosuchus. Within the control region of other vertebrates, several sequence motifs and their order appear to be conserved. Herein, we compare aligned crocodilian D-loop sequences to homologous sequences from other vertebrates ranging from fish to birds. Among other findings, we have discovered that while domain I tends to be shorter than the same region in mammals and birds, it contains sequences similar in structure to both the goose-hairpin and termination associated sequences (TAS). Domain II is highly conservative with regard to size among the taxa examined and contains several of the conserved sequence boxes characterized in other vertebrates. Domain III contains several interesting sequence motifs including tandemly repeated sequences, a long poly-A region in the Crocodylidae, and possible bidirection promoter sequences.  相似文献   

3.
The nucleotide sequences of the D-loop region and its flanking genes of the mitochondrial DNA (mtDNA) from Japanese pond frogs were determined by the methods of PCR, cloning, and sequencing. The frogs belonged to two species, one subspecies, and one local race. The gene arrangements adjacent to the D-loop region were analyzed. The frogs shared a unique mitochondrial gene order that was found in Rana catesbeiana; i.e., cyt b--D-loop region--tRNA(Leu(CUN))--tRNA(Thr)--tRNA(Pro)--tRNA(Phe)--12S rRNA. The arrangements of the three tRNA genes of these frogs were different from those of X. laevis, a species which has the same overall structure as in mammals. Highly repetitive sequences with repeat units (16-bp or 17-bp sequence specific for each taxon) were found in the D-loop region. The length of repetitive sequences varied from 0.6 kbp to 1.2 kbp, and caused the extensive size variation in mtDNA. Several short sequence elements such as putative TAS, OH, CSB-1, and CSB-2 were found in the D-loop region of these frogs. The sequences of these short regulatory elements were conserved in R. catesbeiana, X. laevis, and also in human. The comparison of sequence divergences of the D-loop region and its adjacent genes among various taxa revealed that the rates of nucleotide substitutions depend on genes. The nucleotide sequences of the 3'-side segment of the D-loop region were the most variable among taxa, whereas those of the tRNA and 12S rRNA genes were the most conservative.  相似文献   

4.
Zhang H  Li P  Gao T  Zhuang Z  Jin X 《Mitochondrial DNA》2012,23(3):216-222
This paper deals with the structure of mitochondrial DNA control region of Fenneropenaeus chinensis. The termination-associated sequence (TAS), cTAS, CSB-D-CSB-F, and CSB-1 are detected in the species. The results indicate that the structures of these parts are similar to those of most marine organisms. Two conserved regions and many stable conserved boxes are found in the extended TAS area, central sequences blocks, and conserved sequences blocks (CSBs). This is the special character of F. chinensis. All the mtDNA control region sequences do not have CSB2 and CSB3 blocks, which is quite different from most vertebrates. In addition, the complete mtDNA control region sequences are used to analyze the phylogenetic relationships of F. chinensis. The phylogenetic trees show a lack of genetic structure among populations, which is similar to many previous studies.  相似文献   

5.
We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.  相似文献   

6.
7.
Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5-GCCGG-3) was found at the base of the stem within the tRNA Cys gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.  相似文献   

8.
The complete mitochondrial DNA (mtDNA) control regions (CR), cytochrome b (Cyt b), NADH dehydrogenase subunit 4 (ND4) and cytochrome coxidase subunit I (CO I) genes of four Asian freshwater turtles, Mauremys japonica, Ocadia sinensis, M. mutica, and Annamemys annamensis, were sequenced using universal PCR and long-PCR techniques. Combined with CR sequences of Chinemys reevesii, the composition and structure of CR of the five species were compared and analyzed. Three functional domains (TAS, CD and CSB) in CR and their conserved sequences (TAS, CSB-F, CSB-1, CSB-2, and CSB-3) were identified based on sequence similarity to those of other turtles. At the 3' end of CSB, six type motifs of variable number of tandem repeats (VNTRs) of five species were recognized, in which the TTATATTA motif may be the VNTR motif of the ancestral species of these five turtles. Comparison of nucleotide divergences among Cyt b, ND4, CO I, and CR of 11 turtle species using transitions + transversions and transversions-only methods supported the conclusion that CR evolved 2.6- to 5.7-fold faster than the other mtDNA genes. After excluding VNTRs of CR, molecular phylogenetic trees were constructed with maximum parsimony, maximum likelihood and Bayesian inference methods. The results supported an expanded clade of Mauremys, which included species formerly in Ocadia, Chinemys, Mauremys, and Annamemys; this was also reflected in the results of VNTR analysis.  相似文献   

9.
We determined the complete mitochondrial genome of the Eurasian otterLutra lutra, which is an endangered species in Korea. The circle genome (16,536 bp in size) consists of 13 protein-coding, 22 tRNA, and 2 rRNA genes, and a control region, as found in other metazoan animals. Out of the 37 genes, 28 are encoded on the H-strand, and the nine (ND6 and 8 tRNA genes) on the L-strand. Three overlaps among the 13 protein-coding genes were found: ATP8-ATP6, ND4L-ND4, and ND5-ND6. A control region (1090 bp) including the origin of H-strand replication (OH), TAS (a conserved motif TACAT-16bp-ATGTA) and CSB (CSB-1, CSB-2. and CSB-3) was observed between tRNA-Pro and tRNA-Phe genes, and OL, with 36 highly conserved nucleotides between tRNA-Asn (N) and tRNA-Cys (C) within a cluster of five tRNA genes (WANCY), as typically found in vertebrates. The other important characteristics of theL. lutra mitochondrial genome were described in detail. In addition, a maximum likelihood and Bayesian trees of 9 mustelid species and 1 outgroup were reconstructed based on the nucleotide sequences of 11 protein-coding genes excluding ATP8 and ND6. It showed that Lutrinae formed a monophyletic group with Mustelinae that is not monophyletic. Within the subfamily Lutrinae,L. lutra andEnhydra lutris were grouped together and thenLontra canadentis placed as a sister of the clade. The present result is the first complete mitochondrial genome sequence reported from the genusLutra, and is applicable to molecular phylogenetic, phylogeographic, conservation biological studies for mustelid members. In particular, exploration of sequence variations of the control region may be helpful for analyzing inter-and intra-species variations in the genusLutra.  相似文献   

10.
We sequenced the complete mitochondrial control regions of 11 red knots (Calidris canutus). The control region is 1168 bp in length and is flanked by tRNA glutamate (glu) and the gene ND6 at its 5' end and tRNA phenylalanine (phe) and the gene 12S on its 3' end. The sequence possesses conserved sequence blocks F, E, D, C, CSB-1, and the bird similarity box (BSB), as expected for a mitochondrial copy. Flanking tRNA regions show correct secondary structure, and a relative rate test indicated no significant difference between substitution rates in the sequence we obtained versus the known mitochondrial sequence of turnstones (Charadriiformes: Scolopacidae). These characteristics indicate that the sequence is mitochondrial in origin. To confirm this, we sequenced the control region of a single individual using both purified mitochondrial DNA and genomic DNA. The sequences were identical using both methods. The sequence and methods presented in this paper may now serve as a reference for future studies using knot and other avian control regions. Furthermore, the discovery of five variable sites in 11 knots towards the 3' end of the control region, and the variability of this region in contrast to the more conserved central domain in the alignment between knots and other Charadriiformes, highlights the importance of this area as a source of variation for future studies in knots and other birds.  相似文献   

11.
12.
13.
Escherichia coli 5'-phosphoribosylformylglycinamide (FGAR) amidotransferase (EC 6.3.5.3) encoded by the purL gene catalyzes the conversion of FGAR to formylglycinamidine in the presence of glutamine and ATP for the de novo purine nucleotide biosynthesis. On the basis of the nucleotide sequence of purL, the enzyme was dissected along the polypeptide chain into at least three discrete regions, designated as domains I, II, and III, by genetic complementation tests. Domain III (255 amino acids), which resides in the C-terminal region, is similar in amido acid sequence to several glutamine amidotransferases and exerts the transfer of the amide nitrogen of glutamine. Domain I (791 amino acids) resides in the N-terminal region and contains a potential ATP binding motif. Domain II (249 amino acids) locates between domains I and III and is composed of an alternating structure of at least eight predicted beta-strand and alpha-helix elements, as has been observed in the family of triosephosphate isomerases. The functions of domains I and II have been discussed in relation to the transfer of the carbonyl oxygen of FGAR into the gamma-phosphorus moiety of ATP. These results support a model that the E. coli purL gene is a fused gene of at least three different gene families. The highly repetitive sequences of the E. coli genome appeared to play an important role in the process of the gene fusion.  相似文献   

14.
The nicotinamide nucleotide transhydrogenases (TH) of mitochondria and bacteria are membrane-intercalated proton pumps that transduce substrate binding energy and protonmotive force via protein conformational changes. In mitochondria, TH utilizes protonmotive force to promote direct hydride ion transfer from NADH to NADP, which are bound at the distinct extramembranous domains I and III, respectively. Domain II is the membrane-intercalated domain and contains the enzyme's proton channel. This paper describes the crystal structure of the NADP(H) binding domain III of bovine TH at 1.2 A resolution. The structure reveals that NADP is bound in a manner inverted from that previously observed for nucleotide binding folds. The non-classical binding mode exposes the NADP(H) nicotinamide ring for direct contact with NAD(H) in domain I, in accord with biochemical data. The surface of domain III surrounding the exposed nicotinamide is comprised of conserved residues presumed to form the interface with domain I during hydride ion transfer. Further, an adjacent region contains a number of acidic residues, forming a surface with negative electrostatic potential which may interact with extramembranous loops of domain II. Together, the distinctive surface features allow mechanistic considerations regarding the NADP(H)-promoted conformation changes that are involved in the interactions of domain III with domains I and II for hydride ion transfer and proton translocation.  相似文献   

15.
16.
采用PCR产物直接测序法首次测定大趾鼠耳蝠(Myotis macrodactylus)10个个体的线粒体DNA(mtDNA)控制区全序列,并进行了结构和变异分析。结果表明,大趾鼠耳蝠的控制区结构与其他哺乳动物相似,可分为一个中央保守区(包括F、E、D、C、B元件)和两个外围结构域:延伸的终止结合序列区(包括ETAS1和ETAS2元件)和保守序列区(包括CSB1、CSB2和CSB3元件),其中最为保守的是中央保守区(核苷酸变异度为1.8%)。大趾鼠耳蝠控制区核苷酸全序列具有丰富的长度多态性(1778~2048bp),主要是由在碱基组成、重复数目和排列方式上异质的串联重复序列造成的。在ETAS内发现了TACAT及其反向互补序列ATGTA,支持滑移错配模式(slipped mispairing model)。本研究为该物种的进一步研究和保护提供基础遗传数据。  相似文献   

17.
The evolution of the group II intron in the plastid gene encoding tRNA(Val)UAC (trnV) from seven plant taxa was studied by aligning secondary and other structural features. Levels of evolutionary divergence between six angiosperms and a liverwort, Marchantia polymorpha, were compared for the six domains commonly demonstrated for group II introns and were shown to be statistically heterogeneous. Evolutionary rates varied substantially among various domains and other features. Domain II showed the highest evolutionary rate, approaching the synonymous substitution rate reported for cpDNA-encoded genes, while domain VI and the helix and loop region bearing EBS1 evolved at rates similar to those for nonsynonymous substitutions of a number of cpDNA-encoded genes. The minimum free-energy structure of domain I varied among the seven taxa, suggesting that possible protein-RNA or tertiary interactions are important for intron processing.  相似文献   

18.
Aux/IAA proteins contain a potent transcriptional repression domain   总被引:21,自引:0,他引:21  
  相似文献   

19.
H Wabiko  M Kagaya  H Sano 《Plasmid》1991,25(1):3-15
The structure of several T-DNAs of Agrobacterium tumefaciens was determined by molecular cloning and Southern hybridization. The T-DNAs cloned in Escherichia coli vectors from four different nopaline type strains (PyTE1, PO31, PO22, and AKE10) showed various sizes of restriction enzyme fragments. Comparative analysis of the restriction maps revealed that the T-DNAs were composed of three distinct structural domains: (1) the region proximal to the right border (Domain I) containing the portion essential for tumorigenicity, (2) the proximity to the left border (Domain II), and (3) the region between the two domains (Domain III) to both of which no functional assignments have yet been made. The restriction map indicated that the Domains I and II were conserved in the most clones, including the well-characterized T37 T-DNA. The only exception was AKK1 (obtained from AKE10) which differed in Domain I. In the Domain III, insertions of 1.5- or 1.6-kb DNA were found in four clones, whereas an additional 2.5-kb insertion was found in one clone (PO22P1). The individual T-DNAs including Domain III with insertions was demonstrated in petunia and poplar tumors induced by the referred A. tumefaciens strains. However, resulting tumors differed in morphology and growth. These results suggest that the length polymorphism of the nopaline type T-DNA can be accounted by DNA insertions, and that diverse T-DNAs reflect their different roles in tumorigenicity.  相似文献   

20.
The complete open reading frame of subunit 2 of the NADH dehydrogenase in Oenothera mitochondria is split into five exons. The first two and the last three exons are encoded in distant genomic locations and are transcribed separately. Three tRNA genes coding for tRNA(Cys), tRNA(Asn), and tRNA(Tyr) are located upstream of the terminal three exons c, d, and e. The genomic distance, the interspersed tRNA genes, and the group II intron sequences flanking the two separated exons suggest trans-splicing to be required to connect exons b and c. Maturation of the mRNA includes RNA editing at 36 sites in the open reading frame. Three RNA editing events are observed in the split group II intron sequences. Two of these events allow after editing additional base pairings in the secondary structure, one in the stem of domain I, the other in the putative trans-pairing region of domain IV. These RNA editings may thus be involved in the trans-splicing reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号