首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soluble form of the neural cell adhesion molecule (N-CAM) was obtained from 100,000-g supernatants of crude brain membrane fractions by incubation for 2 h at 37 degrees C. The isolated N-CAM, consisting of one polypeptide chain with a molecular mass of 110 kilodaltons (N-CAM 110), was studied for its binding specificity to different components of the extracellular matrix (ECM). N-CAM 110 bound to different types of collagen (collagen types I-VI and IX). The binding efficiency was dependent on salt concentration and could be called specific according to the following criteria: (a) Binding showed substrate specificity (binding to collagens, but not to other ECM components, such as laminin or fibronectin). (b) Binding of N-CAM 110 to heat-denatured collagens was absent or substantially reduced. (c) Binding was saturable (Scatchard plot analyses were linear with KD values in the range of 9.3-2.0 X 10(-9) M, depending on the collagen type and buffer conditions). Binding of N-CAM 110 to collagens could be prevented in a concentration-dependent manner by the glycosaminoglycans heparin and chondroitin sulfate. N-CAM 110 also interacted with immobilized heparin, and this interaction could be prevented by heparin and chondroitin sulfate. Thus, in addition to its role in cell-cell adhesion, N-CAM is a binding partner for different ECM components, an observation suggesting that it also serves as a substrate adhesion molecule in vivo.  相似文献   

2.
Osteogenin, an extracellular matrix component of bone, is a heparin binding differentiation factor that initiates endochondral bone formation in rats when implanted subcutaneously with an insoluble collagenous matrix. We have examined the interaction of osteogenin with various extracellular matrix components including basement membranes. Osteogenin, purified from bovine bone, binds avidly to type IV collagen and to a lesser extent to both type I and IX collagens. Osteogenin binds equally well to both native and denatured type IV collagen. Both alpha 1 and alpha 2 chains of type IV collagen are recognized by osteogenin. Osteogenin binds to a collagen IV affinity column, and is eluted by 6.0 M urea with 1 M NaCl, pH 7.4, and the eluate contained the osteogenic activity as demonstrated in vivo. Binding of osteogenin to collagen IV is not influenced by either laminin or fibronectin. These results imply that osteogenin binding to extracellular matrix components including collagens I and IV and heparin may have physiological relevance, and such interactions may modulate its local action.  相似文献   

3.
The J1 extracellular adhesion molecule from mouse brain consists of several immunochemically related glycoproteins of different molecular weights and distinct functional properties. Like the brain J1 glycoproteins, the fibroblast-derived J1 glycoproteins interact with all collagen types tested (collagen G and types I-IV and IX), as measured by binding of 125I-labeled J1 glycoproteins to immobilized collagens. As tested for collagen type I, this binding can be inhibited more effectively by chondroitin sulfate than by heparin. After electrophoretic separation and transfer to nitrocellulose, fibroblast-derived J1 only binds to a limited number of collagen types (collagen types I, VI, and IX and G), whereas brain-derived J1 glycoproteins bind to all collagen types tested (collagen types I-VI and IX and G). These results show that fibroblast-derived J1 glycoproteins, although immunochemically related to J1 glycoproteins from brain, differ from these in their binding specificities to extracellular matrix constituents.  相似文献   

4.
H Munakata  K Takagaki  M Majima  M Endo 《Glycobiology》1999,9(10):1023-1027
The interactions of glycosaminoglycans with collagens and other glycoproteins in extracellular matrix play important roles in cell adhesion and extracellular matrix assembly. In order to clarify the chemical bases for these interactions, glycosaminoglycan solutions were injected onto sensor surfaces on which collagens, fibronectin, laminin, and vitronectin were immobilized. Heparin bound to type V collagen, type IX collagen, fibronectin, laminin, and vitronectin; and chondroitin sulfate E bound to type II, type V, and type VII collagen. Heparin showed a higher affinity for type IX collagen than for type V collagen. On the other hand, chondroitin sulfate E showed the highest affinity for type V collagen. The binding of chondroitin sulfate E to type V collagen showed higher affinity than that of heparin to type V collagen. These data suggest that a novel characteristic sequence included in chondroitin sulfate E is involved in binding to type V collagen.  相似文献   

5.
Interaction between cartilage proteoglycan and the collagen(s) composed of 1 alpha, 2 alpha, and 3 alpha chains was studied in vitro. Most of the collagen was insoluble under the conditions of assay (0.15 M NaCl, 0.008 M phosphate buffer, pH 7.4; 4 degrees C) and was in the form of fibrils 20 nm in diameter or thinner. The larger fibrils had 60-70 nm periodicity, characteristic of native collagens. Proteoglycan monomers which had been labeled by incubating cartilage slices in vitro with Na2 35SO4 were used to assay the interaction. The insoluble collagen fraction bound proteoglycan from solution. At proteoglycan:collagen ratios lower than 1:2, binding was rapid and linear, and the dissociation constant was 1.7 X 10(-9) M. At higher proteoglycan:collagen ratios, more proteoglycan was bound, but at a slower rate. Binding of proteoglycan to collagen did not require fibrils, since soluble 1 alpha, 2 alpha, and 3 alpha containing collagen also bound to proteoglycan and formed an insoluble complex. Denatured collagens did not bind proteoglycan or compete for binding with normal collagen. Optimum binding occurred with intact proteoglycan, but proteoglycan which had been treated with protease was also bound at low levels. Both protease-treated proteoglycan and free chondroitin sulfate competed with intact proteoglycan in the binding assays, but neither chondroitinase ABC-treated proteoglycan nor the oligosaccharides produced by digestion of chondroitin sulfate with testicular hyaluronidase altered the binding of proteoglycan to collagen. Hyaluronic acid did not compete with radioactive proteoglycan, but heparin and dextran sulfate were extremely effective inhibitors of binding. These data suggest a relatively nonspecific interaction between sulfated polyanions and 1 alpha, 2 alpha, and 3 alpha containing collagens. However, given the location of these collagens near the chondrocyte surface, the interaction of fibrillar 1 alpha, 2 alpha, 3 alpha collagen with proteoglycan is likely to occur and to be of biological importance.  相似文献   

6.
Interactions between type IV collagen and heparin were examined under equilibrium conditions with rotary shadowing, solid-phase binding assays, and affinity chromatography. With the technique of rotary shadowing and electron microscopy, heparin appeared as thin, short strands and bound to the following three sites: the NC1 domain, and in the helix, at 100 and 300 nm from the NC1 domain. By solid-phase binding assays the binding of [3H]heparin in solution to type IV collagen immobilized on a solid surface was found to be specific, since it was saturable and could be displaced by an excess of unlabeled heparin. Scatchard analysis indicated three classes of binding sites for heparin-type IV collagen interactions with dissociation constants of 3, 30, and 100 nM, respectively. Furthermore, by the solid-phase binding assays, the binding of tritiated heparin could be competed almost to the same extent by unlabeled heparin and chondroitin sulfate side chains. This finding indicates that chondroitin sulfate should also bind to type IV collagen. By affinity chromatography, [3H]heparin bound to a type IV collagen affinity column and was eluted with a linear salt gradient, with a profile exhibiting three distinct peaks at 0.18, 0.22, and 0.24 M KCl, respectively. This suggested that heparin-type IV collagen binding was of an electrostatic nature. Finally, the effect of the binding of heparin to type IV collagen on the process of self-assembly of this basement membrane glycoprotein was studied by turbidimetry and rotary shadowing. In turbidity experiments, the presence of heparin, even in small concentrations, drastically reduced maximal aggregation of type IV collagen which was prewarmed to 37 degrees C. By using the morphological approach of rotary shadowing, lateral associations and network formation by prewarmed type IV collagen were inhibited in the presence of heparin. Thus, the binding of heparin resulted in hindrance of assembly of type IV collagen, a process previously described for interactions between various glycosaminoglycans and interstitial collagens. Such regulation may influence the assembly of basement membranes and possibly modify functions. Furthermore, qualitative and quantitative changes of proteoglycans which occur in certain pathological conditions, such as diabetes mellitus, may alter molecular assembly and possibly permeability functions of several basement membranes.  相似文献   

7.
Binding of the J 1 Adhesion Molecules to Extracellular Matrix Constituents   总被引:6,自引:0,他引:6  
The J1 glycoproteins can be obtained in multiple forms in the soluble fraction of developing and adult mouse brain tissue. They are recovered as two forms of apparent molecular weights of 160,000 and 180,000 (J1-160) from adult mouse brain and as forms of apparent molecular weights of 200,000 and 220,000 (J1-220) from developing brain. J1-160 and J1-220 share common epitopes but are considered as separate entities, with J1-220 being immunochemically closely related if not identical to tenascin. Based on the observation that J1 immunoreactivity appears on basement membrane and interstitial collagens after denervation of the neuromuscular junction in adult rodents, we became interested in investigating the binding properties of J1 glycoproteins to extracellular matrix constituents in vitro. Both J1-160 and J1-220 bound to collagens type I-VI and IX but not to laminin, fibronectin, bovine serum albumin, or gelatin under hypotonic buffer conditions. Under isotonic buffer conditions, J1-220 bound to all collagen types, whereas J1-160 bound only to collagen types V and VI with values that could be examined by Scatchard analysis. Binding of J1-220 to collagens displayed two binding constants (KD) between 1.5 and 4.4 X 10(-9) and 1.8 and 5.5 X 10(-8) M, respectively, under hypotonic buffer conditions and a single KD of 2.1-8.0 X 10(-8) M under isotonic buffer conditions. Binding of J1-160 to collagens had an apparent KD of 1.9-8.0 X 10(-9) M under hypotonic buffer conditions. Under isotonic buffer conditions, binding constants of J1-160 to collagen types V and VI were approximately 2 X 10(-8) M. Binding of J1-220 to collagen type I could be inhibited by J1-220, J1-160, and collagen type VI but not by fibronectin or gelatin. Conversely, binding of J1-160 was inhibited by J1-220, J1-160, and collagen type VI (in order of decreasing efficacy of competition). J1-160 and J1-220 were retained on a heparin-agarose column and eluted in a salt gradient at approximately 0.5 M NaCl. The formation of the J1-heparin complexes was inhibited 100-fold more efficiently by heparin than by chondroitin sulfate. These experiments show that J1 glycoproteins resemble in many respects the extracellular matrix constituents fibronectin, laminin, vitronectin, and von Willebrand factor.  相似文献   

8.
Primary structure of the heparin-binding site of type V collagen   总被引:2,自引:0,他引:2  
The abilities of collagens, type I, II, III, IV, and V, to bind heparin were examined by heparin-affinity chromatography and binding studies with [35S]heparin. At a physiological pH and ionic strength, only type V collagen bound to heparin. Collagens type I and II showed higher affinities than types III and IV for heparin, but did not bind to a heparin column at a physiological ionic strength. The heparin binding site of type V collagen was located in a 30 kDa CNBr fragment of the alpha 1(V) chain, and the amino acid sequence of this fragment was determined. The 30 kDa fragment contained a cluster of basic amino acid residues, and enzymatic cleavage within this basic domain greatly reduced the heparin-binding activities of the resulting peptides. Thus this basic region is probably the heparin-binding site of type V collagen.  相似文献   

9.
Molecular architecture of basement membranes   总被引:49,自引:0,他引:49  
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.  相似文献   

10.
We have previously shown that the expression of perlecan, a heparan sulfate proteoglycan localized on the myoblast surface, is down-regulated during terminal differentiation of skeletal muscle myoblasts (Larraín et al. [1997] Exp. Cell Res. 234:405-412). In this study, we have evaluated the biochemical characteristics of perlecan, its association with the myoblast surface, and its involvement in C(2)C(12) myoblast adhesion to different substrates. Perlecan associated with myoblasts was solubilized by Triton X-100, whereas heparin, high salt, and RGD peptides were unable to solubilize perlecan. Pre-incubation of myoblasts with [(35)S]-Na(2)SO(4), followed by solubilization with Triton X-100 and immunoprecipitation with antibodies against murine perlecan, demonstrated that this proteoglycan present on the cell surface has a heterogeneous size profile with a K(av) value of 0.45, determined by Sepharose CL-4B chromatography. Myoblasts were found to adhere with decreasing affinities to collagen type IV, type I, laminin, fibronectin, perlecan, and matrigel. We found that cell adhesion to collagen type IV was inhibited by blocking this substrate with exogenous perlecan prior to cell plating, whereas no effect was observed for laminin. Furthermore, adhesion of myoblasts to collagen type IV was inhibited by the perlecan core protein obtained by treatment of perlecan with heparitinase, as well as by pre-incubation of the cells with antibodies against murine perlecan. These data support the idea that skeletal muscle cells interact with collagen type IV through the perlecan core protein present on the surface of undifferentiated myoblasts.  相似文献   

11.
Binding of collagen to group A, B, C, D and G streptococci   总被引:3,自引:0,他引:3  
Abstract Binding of 125I-labelled collagen type II to group A, B, C, D and G streptococci was studied. Strains of all five serogroups were found to bind. Binding to one high-binding strain (group G, strain 12127) was characterised. This was reversible, saturable with time and inhibited by unlabelled type II collagen, but not by other proteins such as fibronectin and ovalbumin. However, binding was inhibited by unlabelled type I, II and III collagens and gelatin, suggesting that a common structure of various collagens is involved in binding.  相似文献   

12.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

13.
Recent results show that type IX collagen isolated from chicken cartilage is associated with one or perhaps two chondroitin sulfate chains. To locate the chondroitin sulfate chain(s) along the type IX collagen molecule, rotary shadowing was performed in the presence of monoclonal antibodies which recognize stubs of chondroitin sulfate generated after chondroitinase ABC digestion. Monoclonal antibodies 9-A-2 and 2-B-6 which recognize stubs of chondroitin 4-sulfate were found to bind specifically to the NC3 domain of type IX collagen, and this binding was dependent on prior digestion of the preparation with chondroitinase ABC. Monoclonal antibody 1-B-5, which recognizes unsulfated stubs of chondroitin sulfate, did not show any specific binding to type IX collagen either with or without chondroitinase ABC digestion. As a control, monoclonal antibody 2C2 was used, which in previous work was shown to bind specifically to an epitope located close to or at the NC2 domain. Binding of this antibody to NC2 was unaffected by chondroitinase ABC digestion, and no specific binding of the antibody to the NC3 domain was detected either before or after chondroitinase ABC digestion.  相似文献   

14.
Summary The presence of types II, IX and V collagen was probed in the organ of Corti of the adult gerbil cochlea by use of immunocytochemistry at the light- and electron-microscopic levels. Type II collagen is found in the connective tissues of the osseous spiral lamina and spiral limbus. In the region of the sensory hair cells it is present in the tectorial membrane and antibodies bind to the thick unbranched radial fibers. Type IX collagen co-localizes with type II collagen in the tectorial membrane, where antibodies bind to the thick unbranched radial fibers. Type V collagen is present in the connective tissue of the spiral limbus, the osseous spiral lamina, the eighth nerve, and the tectorial membrane. In the tectorial membrane, the staining with antibodies to type V collagen is more diffuse than that seen for types II and IX collagen and antibodies to type V bind to the thin, highly branched fibers in which the thick fibers are embedded. The results indicate that collagens characteristic of cartilage are localized in the organ of Corti. Within the tectorial membrane, types II and IX collagen form heterotypic thick fibers embedded in a reticular network of type V collagen fibers. These collagens form a highly structured matrix which contributes to the rigidity of the tectorial membrane and allow it to withstand the physical stresses associated with transmission of the stimuli necessary for sensory transduction.  相似文献   

15.
Binding of Yersinia enterocolitica and Yersinia pseudotuberculosis strains to type I, II, and IV collagens has been studied. Wild-type strains which harbored the 40- to 50-megadalton virulence plasmid specifically bound all three types of collagen. Curing of the virulence plasmid or Tn5 insertion in the yopA gene encoding the temperature-inducible outer membrane protein YOP1 abolished the binding of all three collagen types to Y. enterocolitica and type I and II collagens to Y. pseudotuberculosis. Full binding capacity was restored by introduction of the yopA gene into nonbinding Yersinia strains. Binding of type I, II, and IV collagens was expressed in Escherichia coli constructs harboring the yopA gene of either Y. enterocolitica or Y. pseudotuberculosis. The interaction of bacterial cells with type I collagen could be blocked by nonradiolabeled native collagens or denatured collagen but not with other serum and connective-tissue proteins. Unlabeled collagen could not displace bound radiolabeled collagen. The binding was inhibited by YOP1-specific polyclonal antibodies, in contrast to normal rabbit serum. The interaction was rapid and was quite resistant to heat treatment, to proteolytic enzymes, to various pHs in both acidic and alkaline ranges, and to the chaotropic agent urea. We propose that this newly identified interaction may be involved both in the first steps of the pathogenesis and in the complications of Yersinia infections affecting connective tissue.  相似文献   

16.
Collagen family of proteins   总被引:39,自引:0,他引:39  
Collagen molecules are structural macro-molecules of the extracellular matrix that include in their structure one or several domains that have a characteristic triple helical conformation. They have been classified by types that define distinct sets of polypeptide chains that can form homo- and heterotrimeric assemblies. All the collagen molecules participate in supramolecular aggregates that are stabilized in part by interactions between triple helical domains. Fourteen collagen types have been defined so far. They form a wide range of structures. Most notable are 1) fibrils that are found in most connective tissues and are made by alloys of fibrillar collagens (types I, II, III, V, and XI) and 2) sheets constituting basement membranes (type IV collagen), Descemet's membrane (type VIII collagen), worm cuticle, and organic exoskeleton of sponges. Other collagens, present in smaller quantities in tissues, play the role of connecting elements between these major structures and other tissue components. The fibril-associated collagens with interrupted triple helices (FACITs) (types IX, XII, and XIV) appear to connect fibrils to other matrix elements. Type VII collagen assemble into anchoring fibrils that bind epithelial basement membranes and entrap collagen fibrils from the underlying stroma to glue the two structures together. Type VI collagen forms thin-beaded filaments that may interact with fibrils and cells.  相似文献   

17.
In investigating the role of cell-extracellular matrix interactions in cell adhesion and growth control, the effects of heparin on cell-collagen interactions were examined. Exponentially growing Balb/c-3T3 fibroblasts were radiolabelled with 3H-thymidine and detached from tissue culture surfaces using EDTA, and cell attachment to various types of collagen substrata was assayed in the presence or absence of heparin or other glycosaminoglycans (GAGs) or dextran sulfate (40 K). Cells attached readily (70-90%) to films of types I and V, but not to type III collagen. The number of cells bound to types I and V collagen films was inhibited by 10-50% when heparin was present from 0.1-100 micrograms/ml. Cell-collagen attachment was also inhibited by dextran sulfate, and to a lesser extent by dermatan sulfate, but chondroitin sulfates A and C and hyaluronic acid showed no effect. Heparin was active even at early time points in the adhesion assay, suggesting it may disrupt cell-collagen attachment. To study the effects of heparin in modulating cell growth on collagen, growth arrested cells cultured on type I collagen films were serum stimulated in the presence of heparin or other GAGs for 3 days. Growth was inhibited (greater than 40%) only by heparin and dextran sulfate. Interaction of heparin fragments (Mr less than or equal to 6KD) with type I collagen was analyzed by affinity co-electrophoresis (Lee and Lander, 1991) and showed higher affinity heparin binding to native as compared with denatured collagen. These data suggest that sites within native collagen may mediate Balb cell-collagen and heparin-collagen interactions, and such interactions may be relevant towards understanding heparin's antiproliferative activity in vivo and in vitro.  相似文献   

18.
We have previously identified three distinctive amino acid sequences from type IV collagen which specifically bound to heparin and also inhibited the binding of heparin to intact type IV collagen. One of these chemically synthesized domains, peptide Hep-I, has the sequence TAGSCLRKFSTM and originates from the a1(noncollagenous [NC1]) chain of type IV collagen (Koliakos, G. G., K. K. Koliakos, L. T. Furcht, L. A. Reger, and E. C. Tsilibary. 1989. J. Biol. Chem. 264:2313-2323). We describe in this report that this same peptide also bound to intact type IV collagen in solid-phase assays, in a dose-dependent and specific manner. Interactions between peptide Hep-I and type IV collagen in solution resulted in inhibition of the assembly process of this basement membrane glycoprotein. Therefore, peptide Hep-I should represent a major recognition site in type IV collagen when this protein polymerizes to form a network. In addition, solid phase-immobilized peptide Hep-I was able to promote the adhesion and spreading of bovine aortic endothelial cells. When present in solution, peptide Hep-I competed for the binding of these cells to type IV collagen- and NC1 domain-coated substrata in a dose-dependent manner. Furthermore, radiolabeled peptide Hep-I in solution also bound to endothelial cells in a dose-dependent and specific manner. The binding of radiolabeled Hep-I to endothelial cells could be inhibited by an excess of unlabeled peptide. Finally, in the presence of heparin or chondroitin/dermatan sulfate glycosaminoglycan side chains, the binding of endothelial cells to peptide Hep-I and NC1 domain-coated substrates was also inhibited. We conclude that peptide Hep-I should have a number of functions. The role of this type IV collagen-derived sequence in such diverse phenomena as self-association, heparin binding and cell binding and adhesion makes Hep-I a crucial domain involved in the determination of basement membrane ultrastructure and cellular interactions with type IV collagen-containing matrices.  相似文献   

19.
The proteoglycan (PG) on the surface of NMuMG mouse mammary epithelial cells consists of at least two functional domains, a membrane- intercalated domain which anchors the PG to the plasma membrane, and a trypsin-releasable ectodomain which bears both heparan and chondroitin sulfate chains. The ectodomain binds cells to collagen types I, III, and V, but not IV, and has been proposed to be a matrix receptor. Because heparin binds to the adhesive glycoproteins fibronectin, an interstitial matrix component, and laminin, a basal lamina component, we asked whether the cell surface PG also binds these molecules. Cells harvested with either trypsin or EDTA bound to fibronectin; binding of trypsin-released cells was inhibited by the peptide GRGDS but not by heparin, whereas binding of EDTA-released cells was inhibited only by a combination of GRDS and heparin, suggesting two distinct cell binding mechanisms. In the presence of GRGDS, the EDTA-released cells bound to fibronectin via the cell surface PG. Binding via the cell surface PG was to the COOH-terminal heparin binding domain of fibronectin. In contrast with the binding to fibronectin, EDTA-released cells did not bind to laminin under identical assay conditions. Liposomes containing the isolated intact cell surface PG mimic the binding of whole cells. These results indicate that the mammary epithelial cells have at least two distinct cell surface receptors for fibronectin: a trypsin- resistant molecule that binds cells to the sequence RGD and a trypsin- labile, heparan sulfate-rich PG that binds cells to the COOH-terminal heparin binding domain. Because the cell surface PG binds cells to the interstitial collagens (types I, III, and V) and to fibronectin, but not to basal lamina collagen (type IV) or laminin, we conclude that the cell surface PG is a receptor on epithelial cells specific for interstitial matrix components.  相似文献   

20.
A heparan sulfate-rich proteoglycan is on the surface of NMuMG mouse mammary epithelial cells apparently intercalated into their plasma membranes. Mild treatment of the cells with trypsin releases the GAG-bearing region (ectodomain) of this molecule as a discrete proteoglycan which is readily purified. At physiological pH and ionic strength, the ectodomain binds collagen types I, III, and V but not types II, IV, or denatured type I. The proteoglycan binds to a single class of high affinity saturable sites on type I collagen fibrils, sites which are selective for heparin-like glycosaminoglycans. The binding of NMuMG cells to type I collagen duplicates that of their cell surface proteoglycan; cells bind to native but not denatured collagen, and binding is inhibited by heparin but not by other glycosaminoglycans. These binding properties suggest that cell surface heparan sulfate proteoglycans could act as receptors for interstitial collagens and mediate changes in cell behavior induced by collagenous matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号