首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对功能核酸概念的分析需要建立在对功能核酸研究的基础上,从内涵和外延两个方面来进行探析。从内涵来看,它是对具有特殊结构、执行特定生物功能的核酸分子的统称;从外延来看,它包括适体、核酸核酶、核糖开关、发光核酸、修饰核酸、功能核酸裁剪、核酸自组装、功能核酸纳米材料、核酸纳米酶、核酸药物、核酸补充剂以及DNA存储技术等。目前功能核酸已成功地应用于生物传感、生物成像、生物医学等诸多领域。对功能核酸这一概念进行了探讨,并尝试对其范畴、特点进行归纳总结,以期梳理和完善功能核酸的基本概念,促进该领域的进一步发展。  相似文献   

2.
Space-filling molecular models have been used to examine structural analogies between amino acids and nucleic acids. The three-dimensional structures of amino acid R groups appear to be stereochemically related to cavities formed by removal of single bases in double helical nucleic acids. The common L amino acids may thus be complementary to their codons.  相似文献   

3.
Plum GE  Breslauer KJ 《Biopolymers》2001,61(3):214-223
Precise thermodynamic characterization of nucleic acid complex stability is required to understand a variety of biologically significant events as well as to exploit the specific recognition capabilities of nucleic acids in biotechnology, diagnostics, and therapeutics. The development of a database of nucleic acid thermodynamics with sufficient precision to foster further developments in these areas requires new and improved measurement techniques. The combination of a competitive equilibrium titration with fluorescence energy transfer based detection provides a method for precise measurement of differences in free energy values for nucleic acid duplexes that far exceeds in precision those accessible via conventional methods. The method can be applied to detect and to characterize any deviation in a nucleic acid that alters duplex stability. Such deviations include, but are not limited to, mismatches; single nucleotide polymorphisms (SNP); chemically modified nucleotide bases, sugars or phosphates; and conformational anomalies or folding motifs, such as, loops or hairpins.  相似文献   

4.
Proteins and nucleic acids are key components in many processes in living cells, and interactions between proteins and nucleic acids are often crucial pathway components. In many cases, large flexibility of proteins as they interact with nucleic acids is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D atomic structures of such protein–nucleic acid complexes. When such structures are not yet experimentally determined, protein docking can be used to computationally generate useful structure models. However, such docking has long had the limitation that the consideration of flexibility is usually limited to small movements or to small structures. We previously developed a method of flexible protein docking which could model ordered proteins which undergo large-scale conformational changes, which we also showed was compatible with nucleic acids. Here, we elaborate on the ability of that pipeline, Flex-LZerD, to model specifically interactions between proteins and nucleic acids, and demonstrate that Flex-LZerD can model more interactions and types of conformational change than previously shown.  相似文献   

5.
A protocol is described for the incorporation of nitroxide spin-labels into specific 2'-sites within nucleic acids. This labeling strategy facilitates the investigation of nucleic acid structure and dynamics using electron paramagnetic resonance (EPR) spectroscopy and macromolecular complex formation using paramagnetic relaxation enhancement NMR spectroscopy. A spin-labeling reagent, 4-isocyanato TEMPO, which can be prepared in one facile step or obtained commercially, is used for postsynthetic modification of site-specifically 2'-amino-modified nucleic acids. This spin-labeling protocol has been applied primarily to RNA, but is also applicable to DNA. Subsequently, EPR spectroscopic analysis of the spin-labeled nucleic acids allows for the measurements of distances, solvent accessibilities and conformation dynamics. Using the spin-labeling strategy described here, spin-labeled samples can be prepared in 2-4 d.  相似文献   

6.
Acid hydrolysis of protein-free mixtures of nucleotides, nucleosides, and nucleic acids yields amino acids, free bases, and possibly other unidentified fragments when analyzed by thin-layer chromatography and by standard amino acid analysis. Glycine is the predominant amino acid detected, which may constitute 47–97% of the apparent amino acid composition, depending on the type of material subjected to hydrolysis. Obviously, hydrolyzed nucleic acids or their constituents can therefore contribute to the apparent amino acid composition of a supposedly pure peptide or of other more complex mixtures of compounds mistakenly believed to contain only protein. To circumvent this problem, we suggest that nucleotides or nucleic acid moieties should be removed from any product for which the amino acid composition is desired, and that whenever a large glycine peak is noted in a hydrolyzed sample, the presence of nucleic acids or their constituents should be suspected.  相似文献   

7.
Nucleic acid hybridization: from research tool to routine diagnostic method   总被引:2,自引:0,他引:2  
The nucleic acid hybridization reaction is extremely specific and thus a valuable tool for the identification of genes or organism of interest. The increasing use of nucleic acid hybridization in applied fields like diagnostic medicine has led to the development of more convenient hybridization assays than those originally used in basic research. In conventional nucleic acid hybridization methods immobilized nucleic acids are detected on a filter by a radiolabelled probe. Sandwich hybridization is a simple test format for the analysis of unpurified biological material, but has the disadvantage of a slow reaction rate. Solution hybridization methods are fast and easy to perform provided that a method to separate the formed hybrids from the reaction mixture is available. In non-isotopic detection the nucleic acid probe is modified with a chemical group, which is identified with a labelled detector molecule after hybridization. The low sensitivity of detection is the main problem in nucleic acid hybridization methods. Procedures to amplify the detectable signal or the amount of detectable nucleic acid sequences are potential solutions to this problem. The new hybridization methods have successfully been used for some applications, but still need to be combined into well performing tests to be applicable to any desired purpose.  相似文献   

8.
Information about the interaction between nucleic acids and coat proteins in intact virus particles may be obtained by studying the restricted backbone dynamics of the incapsulated nucleic acids using 31P nuclear magnetic resonance (NMR) spectroscopy. In this article, simulations are carried out to investigate how reorientation of a rod-shaped virus particle as a whole and isolated nucleic acid motions within the virion influence the 31P NMR lineshape and transversal relaxation dominated by the phosphorus chemical shift anisotropy. Two opposite cases are considered on a theoretical level. First, isotropic rotational diffusion is used as a model for mobile nucleic acids that are loosely or partially bound to the protein coat. The effect of this type of diffusion on lineshape and transversal relaxation is calculated by solving the stochastic Liouville equation by an expansion in spherical functions. Next, uniaxial rotational diffusion is assumed to represent the mobility of phosphorus in a virion that rotates as a rigid rod about its length axis. This type of diffusion is approximated by an exchange process among discrete sites. As turns out from these simulations, the amplitude and the frequency of the motion can only be unequivocally determined from experimental data by a combined analysis of the lineshape and the transversal relaxation. In the fast motional region both the isotropic and the uniaxial diffusion model predict the same transversal relaxation as the Redfield theory. For very slow motion, transversal relaxation resembles the nonexponential relaxation as observed for water molecules undergoing translational diffusion in a magnetic field gradient. In this frequency region T2e is inversely proportional to the cube root of the diffusion coefficient. In addition to the isotropic and uniaxial diffusion models, a third model is presented, in which fast restricted nucleic acid backbone motions dominating the lineshape are superimposed on a slow rotation of the virion about its length axis, dominating transversal relaxation. In an accompanying article the models are applied to the 31P NMR results obtained for bacteriophage M13 and tobacco mosaic virus.  相似文献   

9.
The changes in the amount of nuclear, chloroplast and mithocondrial nucleic acids of wheat (Triticum aestivum L.) seedlings in relation with drought stress and the effect of gibberellic acid (GA3) on these changes were investigated by spectrophotometric method. It was found that drought stress caused decrease in the amount of nucleic acids. In the seedlings to which GA3 was applied following drought stress, increase in the amount of nuclear nucleic acids (especially in the amount of labile DNA, which is the active portion) was determined. Similar results were observed in the amount of nucleic acids of mitochondria and chloroplasts. All these results show that drought stress caused quantitative changes in the genetic substrate of wheat seedling cells and GA3 application alleviated this effect by activating the synthesis of nucleic acids.  相似文献   

10.
Precise thermodynamic characterization of nucleic acid complex stability is required to understand a variety of biologically significant events as well as to exploit the specific recognition capabilities of nucleic acids in biotechnology, diagnostics, and therapeutics. The development of a database of nucleic acid thermodynamics with sufficient precision to foster further developments in these areas requires new and improved measurement techniques. The combination of a competitive equilibrium titration with fluorescence energy transfer based detection provides a method for precise measurement of differences in free energy values for nucleic acid duplexes that far exceeds in precision those accessible via conventional methods. The method can be applied to detect and to characterize any deviation in a nucleic acid that alters duplex stability. Such deviations include, but are not limited to, mismatches; single nucleotide polymorphisms (SNP); chemically modified nucleotide bases, sugars or phosphates; and conformational anomalies or folding motifs, such as, loops or hairpins. © 2002 Wiley Periodicals, Inc. Biopoly (Nucleic Acid Sci) 61: 214–223, 2002  相似文献   

11.
Direct and straightforward methods to follow nucleic acid cleavage are needed. A spectrophotometric quadruplex formation assay (QFA) was developed, which allows real-time monitoring of site-specific cleavage of nucleic acids. QFA was applied to study both protein and nucleic acid restriction enzymes, and was demonstrated to accurately determine Michaelis–Menten parameters for the cleavage reaction catalyzed by EcoRI. QFA can be used to study the mechanisms of protein–nucleic acid recognition. QFA is also a useful tool for dissecting individual nicking rates of a double-stranded cleavage.  相似文献   

12.
Wada T  Sato H  Inoue Y 《Biopolymers》2004,76(1):15-20
A novel nucleic acid model using peptide ribonucleic acid (PRNA), which contains 5'-amino-5'-deoxypyrimidine ribonucleoside as a recognition site for nucleic acids, has been designed, synthesized and applied to the external reversible control of recognition behavior of the complementary polynucleotide through the orientational switching of the nucleobase induced by borate.  相似文献   

13.
The effects of light and glucose in the nutrient medium on the nucleic acid metabolism of excised 8-day cotton (Gossypium hirsutum var. Acala 44) cotyledons were determined. The rates of synthesis as affected by light and glucose were determined by brief exposures to C(14)-labeled orotic acid. The nucleic acids were fractionated by homogenizing in Tris-HCl buffer and centrifuging to obtain soluble and microsomal RNA (20,000 x g supernatant) and a particulate nucleic acid fraction (20,000 x g precipitate) or by extracting in phenol followed by 10% NaCl extraction at 100 degrees . The phenol extract was analyzed by density gradient centrifugation.Light and glucose caused parallel changes in nucleic acid levels of the various fractions, in orotic acid-6-C(14) absorption and in rates of synthesis of nucleic acids. Light and glucose appear to enhance binding of the ribosome nucleic acid so that it becomes less extractable in Tris-HCl buffer or phenol. The bound nucleic acids were labeled at a slightly higher rate than the total nucleic acids extracted by Tris-HCl or phenol. However, light treatment for 48 hours promoted a very high labeling rate in the soluble, low molecular weight nucleic acid as shown by density gradient centrifugation of the phenol extractable fraction.It was concluded that a part of the nucleic acid changes were brought about by light acting through the photosynthetic production of carbohydrate. This conclusion was strengthened by the observation that herbicide inhibitors of photosynthesis and limited atmospheric CO(2) concentrations partially inhibited the nucleic acid changes. However, glucose did not cause changes in nucleic acid levels as large as those caused by light and changes were observed to occur in light even though the endogenous sugar levels were maintained at a low level by the inhibition of photosynthesis with herbicides. The data indicated that light may produce changes in nucleic acid levels by other mechanisms additional to those regulating the sugar level in the tissue.  相似文献   

14.
功能核酸DNA水凝胶是一种以DNA为构建单元通过化学反应或物理缠结自组装而成的新型柔性材料,其构建单元中包含1种或多种能够形成功能核酸的特定序列。功能核酸是通过碱基修饰和DNA分子之间的相互作用力组合的一类特定核酸结构,包括核酸适配体、DNA核酶、G-四联体(G-quadruplex,G4)和i-motif结构等。传统上,高浓度的长DNA链是制备DNA水凝胶的必要条件,而核酸扩增方法的引入为DNA水凝胶的组装方式提供了新的可能。因此,对常用于制备DNA水凝胶的多种功能核酸以及核酸的提取、合成和扩增手段进行了详细的介绍。在此基础上,综述了通过化学或物理交联方式组装功能核酸DNA水凝胶的制备方法。最后,提出了DNA纳米材料的组装所面临的挑战和潜在的发展方向,以期为开发高效组装的功能核酸DNA水凝胶提供参考。  相似文献   

15.
S J Mazur  M T Record 《Biopolymers》1986,25(6):985-1008
Domain effects on the pseudo-first-order kinetics of the reversible and irreversible association of proteins or other ligands with nucleic acids containing multiple binding sites are treated using the classical reaction-diffusion equation applied to a spherical cell model of the nucleic acid solution and a diffuse-sphere model for the nucleic acid chain molecule. Both uniform and Gaussian distributions of chain segments are analyzed. In general, the details of the segment distribution do not have a major effect on the kinetics of association. Domain effects are best examined experimentally by determining the effect of the molecular weight of the nucleic acid on the kinetics of the association reaction. A theoretical framework is presented that permits such data to be analyzed simply. Kinetic studies over a wide range of nucleic acid molecular weights are required in order to separate the contributions of diffusion and reaction to the observed kinetics, and to determine the contributions of site-based and molecule-based elements to the rate constants.  相似文献   

16.
Liposome-DNA complexes are one of the most promising systems for the protection and delivery of nucleic acids to combat neoplastic, viral, and genetic diseases. In addition, they are being used as models in the elucidation of many biological phenomena such as viral infection and transduction. In order to understand these phenomena and to realize the mechanism of nucleic acid transfer by liposome-DNA complexes, studies at the molecular level are required. To this end, scanning probe microscopy (SPM) is increasingly being used in the characterization of lipid layers, lipid aggregates, liposomes, and their complexes with nucleic acid molecules. The most attractive attributes of SPM are the potential to image samples with subnanometer spatial resolution under physiological conditions and provide information on their physical and mechanical properties. This review describes the application of scanning tunneling microscopy and atomic force microscopy, the two most commonly applied SPM techniques, in the characterisation of liposome-DNA complexes.  相似文献   

17.
Liposome-DNA complexes are one of the most promising systems for the protection and delivery of nucleic acids to combat neoplastic, viral, and genetic diseases. In addition, they are being used as models in the elucidation of many biological phenomena such as viral infection and transduction. In order to understand these phenomena and to realize the mechanism of nucleic acid transfer by liposome-DNA complexes, studies at the molecular level are required. To this end, scanning probe microscopy (SPM) is increasingly being used in the characterization of lipid layers, lipid aggregates, liposomes, and their complexes with nucleic acid molecules. The most attractive attributes of SPM are the potential to image samples with subnanometer spatial resolution under physiological conditions and provide information on their physical and mechanical properties. This review describes the application of scanning tunneling microscopy and atomic force microscopy, the two most commonly applied SPM techniques, in the characterisation of liposome-DNA complexes.  相似文献   

18.
J. Süss 《Biologia Plantarum》1971,13(5-6):368-374
When studying the determination of nucleic acids in pollen based on extraction with hot 10% NaCl, further factors influencing the results were observed. Prolongation of the homogenization from 3 to 5 or 7 min caused considerable loss of DNA in extracts. On using trichloracetic acid to precipitate nucleic acids from the NaCl extracts, higher final values for the sum of nucleic acids were obtained than by precipitating with perchloric acid.  相似文献   

19.
The MAGIChip (MicroArrays of Gel-Immobilized Compounds on a chip) consists of an array of hydrophilic gel pads fixed on a hydrophobic glass surface. These pads of several picoliters to several nanoliters in volume contain gel-immobilized nucleic acids, proteins, and other compounds, as well as live cells. They are used to conduct chemical and enzymatic reactions with the immobilized compounds or samples bound to them. In the latter case, nucleic acid fragments can be hybridized, modified, and fractionated within the gel pads. The main procedures required to analyze nucleic acid sequences (PCR, detachment of primers and PCR-amplified products from a substrate, hybridization, ligation, and others) can be also performed within the microchip pads. A flexible, multipurpose, and inexpensive system has been developed to register the processes on a microchip. The system provides unique possibilities for research and biomedical applications, allowing one to register both equilibrium states and the course of reaction in real time. The system is applied to analyze both kinetic and thermodynamic characteristics of molecular interaction in the duplexes formed between nucleic acids and the probes immobilized within the microchip gel pads. Owing to the effect of stacking interaction of nucleic acids, the use of short oligonucleotides extends the possibilities of microchips for analysis of nucleic acid sequences, allowing one to employ the MALDI-TOF mass spectrometry to analyze the hybridization data. The specialized MAGIChips has been successfully applied to reveal single-nucleotide polymorphism of many biologically significant genes, to identify bacteria and viruses, to detect toxins and characterize the genes of pathogenic bacteria responsible for drug resistance, and to study translocations in the human genome. On the basis of the MAGIChip, protein microchips have been created, containing immobilized antibodies, antigens, enzymes, and many other substances, as well as microchips with gel-immobilized live cells.  相似文献   

20.
The MAGIChip (MicroArrays of Gel-Immobilized Compounds on a chip) consists of an array of hydrophilic gel pads fixed on a hydrophobic glass surface. These pads of several picoliters to several nanoliters in volume contain the gel-immobilized nucleic acids, proteins, and other compounds, as well as live cells. They are used to conduct chemical and enzymatic reactions with the immobilized compounds or samples bound to them. In the latter case, nucleic acid fragments can be hybridized, modified, and fractionated within the gel pads. The main procedures required to analyze nucleic acid sequences (PCR, detachment of primers and PCR-amplified products from a substrate, hybridization, ligation, and others) can be also performed within the microchip pads. A flexible, multipurpose, and inexpensive system has been developed to register the processes proceeding on a microchip. The system provides unique possibilities for research and biomedical applications, allowing one to register both equilibrium states and the course of reaction in real time. The system is applied to analyze both kinetic and thermodynamic characteristics of molecular interaction in the duplexes formed between nucleic acids and the probes immobilized within the microchip gel pads. Owing to the effect of stacking interaction of nucleic acids, the use of short oligonucleotides extends the possibilities of microchips for analysis of nucleic acid sequences, allowing one to employ the MALDI-TOF mass spectrometry to analyze the hybridization data. The specialized MAGIChips has been successfully applied to reveal single nucleotide polymorphism of many biologically significant genes, to identify bacteria and viruses, to detect toxins and characterize the genes of pathogenic bacteria responsible for drug resistance, and to study translocations in the human genome. On the basis of the MAGIChip, the protein microchips have been created, containing the immobilized antibodies, antigens, enzymes, and many other substances, as well as the microchips with the gel-immobilized live cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号