首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Based on the assumption that electron transfer between globular proteins occurs by a collective excitation of polaron type, the dependence of the rate of this process on the distance between the donor and acceptor centers with regard to their detailed electron structure was calculated. The electron structure of the heme was calculated by the quantum-chemical MNDO-PM3 method. The results were compared with experimental data on interprotein and intraglobular electron transfer. It is shown that, in the framework of this model, the electron transfer is not exponential and does not require a particular transfer pathway since the whole protein macromolecule is involved in the formation of the electron excited state.  相似文献   

2.
M-DNA is a complex of metal ions such as Zn(2+) with duplex DNA. Previous results showed that the fluorescence of a donor fluorophore was quenched when an acceptor fluorophore was placed at the opposite end of a short M-DNA duplex. In order to investigate further the molecular wire behaviour of M-DNA, 30-mer duplexes were constructed with fluorescein as donor and rhodamine, pyrene and the cyanine dyes, Cy5 and Cy5.5 as acceptors. Good quenching was observed in all cases even though the efficiency of resonance energy transfer was calculated to be < 5%. The distance dependence of quenching was investigated by preparing doubly-labelled duplexes ranging in length from 20 to 1,000 base pairs. Upon formation of M-DNA significant quenching of the fluorescence of the donor fluorophore was observed in duplexes up to 500 base pairs in length. The amount of quenching decreased with increasing length of the duplexes with a shallow distance dependence. The results are consistent with an electron transfer mechanism in which the electron hops between metal centers. This process can occur efficiently over long distances.  相似文献   

3.
A comparative study was performed to evaluate the signal amplification strategies in electrochemical affinity sensing, which included the direct electron transfer and diffusible-group mediated electron transfer between label enzymes that were specifically bound to target proteins and chemically modified electrode surfaces. As a platform surface for affinity recognition reactions, a double functionalized poly(amido amine) dendrimer monolayer that was modified with ferrocene and biotin groups was constructed on a gold surface. With the chemically modified electrode, a model affinity sensing with avidin was investigated. The advantages of adopting the diffusible-group mediated signaling strategy were demonstrated in terms of signal sensitivity and stability.  相似文献   

4.
Direct and indirect electron transfer between electrodes and redox proteins   总被引:4,自引:0,他引:4  
The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.  相似文献   

5.
Lakhno VD  Chuev GN  Ustinin MN 《Biofizika》1998,43(6):949-952
The dependence of the matrix element of the probability of interprotein electron transfer on the mutual orientation of the donor and acceptor centers and the distance between them was calculated. The calculations were made under the assumption that electron transfer proceeds mainly by a collective excitation of polaron nature, like a solvated electron state. The results obtained are consistent with experimental data and indicate the nonexponential behavior of this dependence in the case when the distance transfer is less than 20 A.  相似文献   

6.
A novel nafion-riboflavin membrane was constructed and characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy and cyclic voltammetric techniques. The estimated average diameter of the designed nanoparticles was about 60 nm. The functional membrane showed a quasi-reversible electrochemical behaviour with a formal potential of -562 +/- 5 mV (vs Ag/AgCl) on the gold electrode. Some electrochemical parameters were estimated, indicating that the system has good and stable electron transfer properties. Moreover, horseradish peroxidase (HRP) was immobilized on the riboflavin-nafion functional membrane. The electrochemical behaviour of HRP was quasi-reversible with a formal potential of 80 +/- 5 mV (vs Ag/AgCl). The HRP in the film exhibited good catalytic activity towards the reduction of H2O2. It shows a linear dependence of its cathodic peak current on the concentration of H2O2, ranging from 10 to 300 (micro)M.  相似文献   

7.
When deoxyribonucleoprotein-proflavine complexes were studied by electron spin-resonance spectroscopy following gamma-irradiation, it was found that stable free radicals were not formed at random on the complex but were preferentially located on proflavine. Since proflavine intercalalated to DNA bases serves as a final acceptor of electrons liberated by ionization, the result of our experiment was regarded as suggesting that the electron transfer from the protein moiety to the DNA moiety occurred in the irradiated deoxyribonucleoprotein.  相似文献   

8.
Photoinduced electron transfer reactions play an important role in the primary step of the biological photosynthesis process. In an attempt to understand better the mechanism of the charge separation organic donor-acceptor molecules containing porphyrins and quinones were designed as photosynthesis models. In order to study the structure dependence of the photoinduced electron transfer twofold and fourfold bridged porphyrin-quinone systems with increasing donor-acceptor distance were synthesized (Figure 1) [1, 2, 3]. It was assumed that in these molecules the porphyrin and quinone should be linked in a rigid and well-defined orientation. To verify this assumption the conformational behavior of these systems was studied by high-temperature MD simulations in combination with conformational analysis of selected minimized structures [4, 5].  相似文献   

9.
The primary electron transfer processes in Rhodopseudomonas sphaeroides R-26 were studied as a function of temperature by means of picosecond spectroscopy. The first chemical step of the bacterial photosynthesis involves an electron transfer from the excited state of a bacteriochlorophyll a dimer, (BChl)2, to a bacteriopheophytin (BPh) to form the radical ion pair (BChl)2+. BPh-.. The upper limit for the formation time of this ion-pair was found to be 10 ps, at temperatures in the range 300-4.2 degree K. Similarly, the second chemical step, involving electron transfer from BPh-. to an ubiquinone-iron complex (QFe), was found to have a lifetime of approximately 150 ps, also independent of temperature in the same range. We interpret the absence of temperature dependence as indicating that process 2 proceeds via a tunneling mechanism. Utilizing our results in conjunction with electron tunneling theories, we calculate the distance between BPh-. and Q(Fe) to be 9--13 A. Our results also imply a closer proximity between (BChl)2 and BPh.  相似文献   

10.
We synthesized novel ubiquinone analogs by hybridizing the natural ubiquinone ring (2,3-dimethoxy-5-methyl-1,4-benzoquinone) and hydrophobic phenoxybenzamide unit, and named them hybrid ubiquinones (HUs). The HUs worked as electron transfer substrates with bovine heart mitochondrial succinate-ubiquinone oxidoreductase (complex II) and ubiquinol-cytochrome c oxidoreductase (complex III), but not with NADH-ubiquinone oxidoreductase (complex I). With complex I, they acted as inhibitors in a noncompetitive manner against exogenous short-chain ubiquinones irrespective of the presence of the natural ubiquinone ring. Elongation of the distance between the ubiquinone ring and the phenoxybenzamide unit did not recover the electron accepting activity. The structure/activity study showed that high structural specificity of the phenoxybenzamide moiety is required to act as a potent inhibitor of complex I. These findings indicate that binding of the HUs to complex I is mainly decided by some specific interaction of the phenoxybenzamide moiety with the enzyme. It is of interest that an analogous bulky and hydrophobic substructure can be commonly found in recently registered synthetic pesticides the action site of which is mitochondrial complex I.  相似文献   

11.
We characterized the fluorescence resonance energy transfer (FRET) from pyrene (donor) to perylene (acceptor) for nucleic acid assays under homogeneous solution conditions. We used the hybridization between a target 32mer and its complementary two sequential 16mer deoxyribonucleotides whose neighboring terminals were each respectively labeled with a pyrene and a perylene residue. A transfer efficiency of ~100% was attained upon the hybridization when observing perylene fluorescence at 459 nm with 347-nm excitation of a pyrene absorption peak. The Förster distance between two dye residues was 22.3 Å (the orientation factor of 2/3). We could change the distance between the residues by inserting various numbers of nucleotides into the center of the target, thus creating a gap between the dye residues on a hybrid. Assuming that the number of inserted nucleotides is proportional to the distance between the dye residues, the energy transfer efficiency versus number of inserted nucleotides strictly obeyed the Förster theory. The mean inter-nucleotide distance of the single-stranded portion was estimated to be 2.1 Å. Comparison between the fluorescent properties of a pyrene–perylene pair with those of a widely used fluorescein–rhodamine pair showed that the pyrene–perylene FRET is suitable for hybridization assays.  相似文献   

12.
 The singlet state of stilbene-4,4′-dicarboxamide can serve as a fluorescent probe of both DNA conformation and electron transfer. Covalent incorporation of the stilbene-dicarboxamide into DNA structures with restricted conformational mobility results in inhibition of stilbene isomerization and an increase in its fluorescence quantum yield and lifetime. The fluorescence of stilbenedicarboxamide is selectively quenched by proximate guanine, but not by the three other DNA nucleobases. Selective quenching occurs via an electron transfer mechanism in which stilbene serves as the electron acceptor and guanine as the electron donor. Kinetic analysis of the distance dependence of electron transfer in stilbene-bridged hairpins suggests that duplex DNA is more effective than proteins as a medium for electron transfer, but that it does not function as a molecular wire. Received, accepted: 5 January 1998  相似文献   

13.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) and gold nanoparticles immobilised on rhodium-graphite electrodes. Thin films of gold nanoparticles were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto both gold nanoparticle modified and bare rhodium-graphite electrodes. Cyclic voltammetry indicated enhanced activity of the enzyme at the gold nanoparticle modified surface. The role of the nanoparticles in mediating electron transfer to the cytochrome P450scc was verified using ac impedance spectroscopy. Equivalent circuit analysis of the impedance spectra was performed and the values of the individual components estimated. On addition of aliquots of cholesterol to the electrolyte bioelectrocatalytic reduction currents were obtained. The sensitivity of the nanoparticle modified biosensor to cholesterol was 0.13 microA microM-1 in a detection range between 10 and 70 microM of cholesterol. This confirms that gold nanoparticles enhance electron transfer to the P450scc when present on the rhodium-graphite electrodes.  相似文献   

14.
The flavoprotein moiety of Escherichia coli sulfite reductase (SiR-FP) is homologous to electron transfer proteins such as cytochrome-P450 reductase (CPR) or nitric oxide synthase (NOS). We report on the three-dimensional structure of SiR-FP18, the flavodoxin-like domain of SiR-FP, which has been determined by NMR. In the holoenzyme, this domain plays an important role by shuttling electrons from the FAD to the hemoprotein (the beta-subunit). The structure presented here was determined using distance and torsion angle information in combination with residual dipolar couplings determined in two different alignment media. Several protein-FMN NOEs allowed us to place the prosthetic group in its binding pocket. The structure is well-resolved, and (15)N relaxation data indicate that SiR-FP18 is a compact domain. The binding interface with cytochrome c, a nonphysiological electron acceptor, has been determined using chemical shift mapping. Comparison of the SiR-FP18 structure with the corresponding domains from CPR and NOS shows that the fold of the protein core is highly conserved, but the analysis of the electrostatic surfaces reveals significant differences between the three domains. These observations are placed in the physiological context so they can contribute to the understanding of the electron transfer mechanism in the SiR holoenzyme.  相似文献   

15.
Three new heteroleptic Cu(I) complexes containing one phenanthroline and one diphosphine type ligand ([Cu(N-N)(P-P)]+) have been prepared. In particular, one ligand is constituted by 1,10-phenanthroline (1), 2,9-dimethyl-1,10-phenanthroline (2) and 2,9-diphenethyl-1,10-phenanthroline (3) and the other ligand is in all cases 1,1′-bis(diphenylphosphino)ferrocene (dppf). Therefore, copper and iron metal centres are quite close one another, as evidenced by X-ray crystal diffraction. The structure together with the electrochemical and photophysical properties of these complexes have been compared to that of the corresponding complexes where dppf has been replaced by bis[2-(diphenylphosphino)-phenyl]ether (POP). Cyclic voltammetric experiments evidenced that the first oxidation process is located on the ferrocene moiety and that oxidation of Cu(I) is moved to more positive potential values and a chemical reaction is coupled to the electron transfer process. The absorption spectra show a metal-to-ligand charge transfer (MLCT) band, typical of Cu(I) phenanthroline complexes, at a higher energy compared to the homoleptic [Cu(N-N)2]+ species. No emission at either room temperature or 77 K has been observed for compounds 2 and 3, contrary to the high luminescence observed for the corresponding POP complexes. This result is consistent with a photoinduced energy transfer from the Cu(I) complex to the ferrocene moiety.  相似文献   

16.
Femtosecond spectroscopy was used in combination with site-directed mutagenesis to study the influence of tyrosine M210 (YM210) on the primary electron transfer in the reaction center of Rhodobacter sphaeroides. The exchange of YM210 to phenylalanine caused the time constant of primary electron transfer to increase from 3.5 +/- 0.4 ps to 16 +/- 6 ps while the exchange to leucine increased the time constant even more to 22 +/- 8 ps. The results suggest that tyrosine M210 is important for the fast rate of the primary electron transfer.  相似文献   

17.
A new form of high surface area bioelectrode, based on nanofibers of electrospun gold with immobilized fructose dehydrogenase, was developed. The gold fibers were prepared by electroless deposition of gold nanoparticles on an electrospun poly(acrylonitrile)-HAuCl(4) fiber. The material was characterized using electron microscopy, XRD and BET, as well as cyclic voltammetry and biochemical assay of the immobilized enzyme. The electrochemical surface area of the gold microfibers was 0.32 ± 0.04 m(2)/g. Fructose dehydrogenase was covalently coupled to the gold surface through glutaraldehyde crosslinks to a cystamine monolayer. The enzyme exhibited mediated electron transfer directly to the gold electrode and catalytic currents characteristic of fructose oxidation in the presence of a ferrocene methanol mediator were observed. The limit of detection of fructose was 11.7 μM and the K(M) of the immobilized enzyme was 5mM. The microfiber electrode was stable over 20 cycles with a 3.05% standard deviation. The response time of the sensor was less than 2.2s and reached half maximum value within 3.6s. The sensor was proven to be accurate and precise in both serum and popular beverages sweetened with high fructose corn syrup. The addition of glucose isomerase enabled the sensor to perform with glucose, thus expanding the available analyte selection for the sensor.  相似文献   

18.
A well-designed three-way junction (TWJ) aptasensor for lysozyme detection was developed based on target-binding-induced conformational change of aptamer-complementary DNA (cDNA) as probe. A ferrocene (Fc)-tagged cDNA is partially hybridized with an anti-lysozyme aptamer to form a folded structure where there is a coaxial stacking of two helices and the third one at an acute angle. In addition, the fabrication of the sensor was achieved via the single-step method, which offered a good condition for sensing. In the absence of lysozyme, electron transfer (eT), through the coaxial two helices called "conductive path", is allowed between Fc-labeled moiety and the electrode. The binding of lysozyme to the aptamer blocks eT, leading to diminished redox signal. This aptasensor with an instinct signal attenuation factor shows a high sensitivity to lysozyme, and the response data is fitted by nonlinear least-squares to Hill equation. Detection limit is 0.2nM with a dynamic range extending to 100nM. Compared with existing electrochemical impedance spectroscopy (EIS)-based approaches, TWJ-DNA aptasensor was demonstrated to be more specific for detection and simpler for regeneration procedure.  相似文献   

19.
20.
Human serum albumin (HSA) has been spin-labelled with stearic acids having the nitroxide moiety attached to the hydrocarbon chain either at the 5th or at the 16th carbon atom (n-SASL, n = 5 and 16, respectively) with respect to the carboxyl groups. Its interaction with sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) mixed with submicellar content of poly(ethylene glycol:2000)-grafted dipalmitoyl phosphatidylethanolamine (PEG:2000-DPPE) has been studied by conventional electron spin resonance (ESR) spectroscopy. In the absence of bilayer membranes, the ESR spectra of nitroxide stearic acids non-covalently bound to HSA are single component powder patterns, indicative of spin labels undergoing temperature dependent anisotropic motion in the slow motional regime on the conventional ESR timescale. The adsorption of HSA to DPPC bilayers results in two component ESR spectra. Indeed, superimposed to an anisotropic protein-signal appears a more isotropic signal due to the labels in the lipid environment. This accounts for the transfer of fatty acids from the protein to DPPC bilayers. Two spectral components with different rotational mobility are also singled out in the spectra of n-SASL bound to HSA when DPPC/PEG:2000-DPPE mixtures are present in the dispersion medium. The fraction, f(L)(16-SASL), of spin labels transferred from the protein to lipid/polymer-lipid lamellar membranes has been quantified performing spectral subtraction. It is found that f(L)(16-SASL) decreases on increasing the content of the polymer-lipid mixed with DPPC. It is strongly reduced in the low-density mushroom regime and levels off in the high-density brush regime of the polymer-lipid content as a result of the steric stabilization exerted by the PEG-lipids. Moreover, the fraction of transferred fatty acids from HSA to SSL is dependent on the physical state of the lipid bilayers. It progressively increases with increasing the temperature from the gel to the liquid-crystalline lamellar phases of the mixed lipid/polymer-lipid membranes, although such a dependence is much weaker in the brush regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号