首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utility of temperature gradient gel electrophoresis (TGGE) as a means of analysing the gut contents of predators was evaluated. Generalist predators consume multiple prey species and a species-specific primer approach may not always be a practical means of analysing predator responses to prey diversity in complex and biodiverse ecosystems. General invertebrate primers were used to amplify the gut contents of predators, generating banding patterns that identified component prey remains. There was no evidence of dominance of the polymerase chain reaction (PCR) by predator DNA. When applied to field samples of the carabid predator Pterostichus melanarius (Illiger) nine banding patterns were detected, including one for aphids. To further distinguish between species, group-specific primers were designed to separate species of earthworm and aphid. TGGE of the earthworm PCR products generated banding patterns that varied with haplotype in some species. Aphid and earthworm DNA could be detected in the guts of carabids for up to 24 h using TGGE. In P. melanarius, with low numbers of prey per insect gut (mean<3), interpretation of banding patterns proved to be tractable. Potential problems of interpretation of TGGE gels caused by multiple prey bands, cryptic bands, haplotype variation, taxonomic uncertainties (especially with regard to earthworms), secondary predation, scavenging and presence of parasites and parasitoids in the prey or the predators, are discussed. The results suggest that PCR, using combinations of general invertebrate and group-specific primers followed by TGGE, provides a potentially useful approach to the analysis of multiple uncharacterized prey in predators.  相似文献   

2.
Although many predatory insects appear to be opportunistic generalists in their selection of prey, only a subset of prey species may in fact serve as “essential foods” capable of supporting immature growth and adult reproduction. It has been suggested that other, “alternative foods” serve only to maintain the predator when essential foods are not available, but little research has evaluated the significance of a mixed diet of essential and alternative foods for predator growth or reproduction. Here we test the general hypothesis that although alternative prey may be inadequate to support reproduction when consumed alone by adult predators, consumption of such prey may enhance the predator's reproductive output when the predator also has access to essential prey. We compared egg production by two aphidophagous lady beetles, Coccinella septempunctata and C. transversoguttata, provided with diets of aphids (essential prey) and weevils (alternative prey). As predicted, female predators produced greater numbers of eggs when a diet of pea aphids in limited number was supplemented by alfalfa weevil larvae. The predators laid no eggs when provided only with weevils or only with sugar. But once aphids were added to the diet, females of C. transversoguttata (but not C. septempunctata) laid eggs in greater numbers when they had fed previously on weevils than on sugar. Females of both species also produced eggs in modest numbers when provided with both weevils in excess and sugar, but this diet supported a lower rate of egg production than did a diet of weevils in excess plus a limited number of aphids. Although C. septempunctata has a longer history of association with the alfalfa weevil than does C. transversoguttata, the former species was not more effective in exploiting this alternative prey in support of reproduction. The tendency of generalist predators such as adult lady beetles to consume alternative as well as essential prey probably enhances considerably their ability to capitalize on short-lived and scattered opportunities as they seek out suitable sites in which to reproduce. Received: 11 May 1998 / Accepted: 1 May 1999  相似文献   

3.
Gut-content analyses using molecular techniques are an effective approach to quantifying predator-prey interactions. Predation is often assumed but scavenging is an equally likely route by which animal DNA enters the gut of a predator/scavenger. We used PCR (polymerase chain reaction) to detect scavenged material in predator gut homogenates. The rates at which DNA in decaying slugs (Mollusca: Pulmonata) and aphids (Homoptera: Aphididae) became undetectable were estimated. The detectability of DNA from both carrion types in the guts of the generalist predator Pterostichus melanarius (Coleoptera: Carabidae) was then determined. The effects of carrion age and weight, as well as beetle sex, on detection periods, were quantified. Laboratory trials measured prey preference of beetles between live and decaying prey. Further experiments measured, for the first time, feeding by P. melanarius on dead slugs and aphids directly in the field. In both field and laboratory, P. melanarius preferentially fed on dead prey if available, but preference changed as the prey became increasingly decayed. Disappearance rates for slug carrion in wheat fields and grasslands were estimated and P. melanarius was identified as the main scavenger. Comparison of the retention time for dead slugs in the field, with the detection period for decaying slug material in the guts of the predators, showed that PCR-based techniques are not able to distinguish between predated and scavenged food items. This could potentially lead to overestimation of the impact of predation on slugs (and other prey) by carabids. Possible implications of facultative scavenging by invertebrate predators for biocontrol and food-web research are discussed.  相似文献   

4.
PCR-based techniques to investigate predator-prey trophic interactions are starting to be used more widely, but factors affecting DNA decay in predator guts are still poorly understood. Here, we investigated the effects of time since feeding, temperature and amplicon size on the detectability of prey DNA in the gut content of two closely related predator species. Cereal aphids, Sitobion avenae, were fed to the carabid beetles Pterostichus melanarius and Nebria brevicollis. Beetles were allowed to digest their meal at 12 degrees C, 16 degrees C and 20 degrees C, and batches of beetles were subsequently frozen at time periods from 0-72 h after feeding. Aphid DNA was detected within beetles' gut contents using primers amplifying fragments of 85, 231, 317 and 383 bp. Prey DNA detection rates were significantly higher in N. brevicollis than in P. melanarius, indicating fundamental dissimilarities in prey digestion capacities. High temperatures (20 degrees C) and large amplicons (383 bp) significantly decreased detection rates. The shortest amplicon gave the highest prey DNA detection success, whereas no differences were observed between the 231 bp and the 317 bp fragment. Our results indicate that factors such as ambient temperature, predator taxon and amplicon size should all be considered when interpreting data derived from PCR-based prey detection. Correction for such factors should make calculation of predation rates in the field more accurate and could help us to estimate when predation events occur in the field.  相似文献   

5.
Abstract Alien invertebrate predators have been introduced to Hawaii to control pests, particularly in lowland areas where most crops are grown. We developed techniques for assessing the impact of these predators on native food webs in relatively pristine upland areas where, it was hypothesized, few lowland predators might be found. Predator densities were assessed along transects within the Alakaii Swamp on Kaua'i. The most numerous alien biocontrol agents found were Halmus chalybeus (Coccinellidae), a species known to feed on Lepidoptera eggs. Laboratory experiments were conducted using two genera of endemic Lepidoptera, Scotorythra and Eupithecia (Geometridae), that are of considerable conservation value, the former because of its recent speciation across Hawaii, the latter for its unique predatory larvae. Techniques were developed for detecting Lepidoptera DNA within the guts of alien predators using prey-specific PCR primers. General primers amplified fragments of the mitochondrial cytochrome oxidase I gene from beetles and Lepidoptera. The sequences were aligned and used successfully to design target-specific primers for general detection of the remains of Geometridae and for particular species, including Scotorythra rara and Eupithecia monticolans. DNA fragments amplified were short [140-170 base pairs (bp)], optimizing detection periods following prey ingestion. Trials using the introduced biocontrol agent Curinus coeruleus (Coccinellidae) demonstrated detection of Lepidoptera DNA fragments = 151 bp in 85-100% of beetles after 24 h digestion of an early instar larva. This study provides a framework for future use of molecular gut analysis in arthropod conservation ecology and food web research with considerable potential for quantifying threats to endemic species in Hawaii and elsewhere.  相似文献   

6.
Non-trophic interactions, driven by one species changing the behavior but not density of another species, appear to be as pervasive as those involving consumption. However, ecologists have only begun to explore non-trophic interactions in species-rich communities. We investigated interactions within a community including two predator–prey linkages separated in space: ground-active predatory beetles and their fly egg prey on the ground, and lady beetles and their aphid prey in plant foliage. In field and greenhouse experiments we found that ground-active predators preyed heavily on fly eggs except when both aphids and lady beetles were present. The aphids drop from the foliage to escape foraging lady beetles, and once on the ground apparently triggered ground-active predators to switch from attacking fly eggs to attacking aphids. This suggests that the first non-trophic interaction in the foliage, mediated by aphid antipredator behavior, in turn initiated and accentuated a second non-trophic interaction on the ground, mediated by prey-switching behavior by ground predators. Our results demonstrate that successive non-trophic interactions can be propagated along chains of more than three species, and can serve to link species that are otherwise spatially isolated.  相似文献   

7.
Species- and group-specific PCR primers were developed to study predation on pest and nonpest invertebrate species by generalist carabid predators in agroecosystems. To ensure the amplification of degraded DNA in predator gut samples, amplicons were designed to be less than 300 bp. Specificity of primers was assessed by cross-amplification against a panel of target and nontarget invertebrate species. The new primers were combined with previously published primers for slugs and collembolla in multiplex reactions to simultaneously screen each predator for the presence of multiple prey. All prey species were detected in a screen of the gut contents of field-caught predators.  相似文献   

8.
Identifying key cereal aphid predators by molecular gut analysis   总被引:10,自引:0,他引:10  
We describe polymerase chain reaction (PCR) primers for gut analysis of aphid predators. The primers amplify aphid mitochondrial COII fragments ranging in size from 77 to 386 bp. Using these primers, we were able to distinguish six species of US Great Plains cereal aphids, including two congeners, Rhopalosiphum maidis (Fitch) and R. padi (L.), and to detect them in extracts of coccinellid and chrysopid predators. We devised a protocol for deriving half-lives of detectability for the DNA of a single aphid consumed by predators maintained under simulated field dietary and temperature conditions. Using this protocol and primers that amplify a 198-bp fragment, we determined statistically different half-lives of detectability for a single R. maidis of 3.95 h in Chrysoperla plorabunda (Fitch) and 8. 78 h in Hippodamia convergens Guerin. The detectability half-life for a 339-bp R. maidis fragment was statistically longer in C. plorabunda but not in H. convergens. The sensitivity of the assay for the 198-bp fragment is 10-7 aphid equivalents. For species-specific predator gut analysis, PCR is superior to monoclonal antibody technology, giving comparable detectability half-lives with lower expense, much shorter development times, and greater certainty of a successful outcome.  相似文献   

9.
Earthworms provide a major potential source of alternative food for polyphagous predators, such as carabid beetles, that are natural enemies of slugs, aphids and other agricultural pests. Non-pest prey may foster larger numbers of natural enemies, which then help to control pests, or alternatively may help to divert the predators away from pest control. An earthworm-specific monoclonal antibody was developed to study carabid-earthworm interactions in the field and assess the role of earthworms as alternative prey. The antibody could identify as little at 7 ng of earthworm protein in an ELISA, and could detect earthworm remains in the foregut of the carabid beetle Pterostichus melanarius for 64 h after consumption. Thirty-six per cent of field-collected beetles contained earthworm remains. Quantities of earthworm proteins in the beetle foreguts were negatively related to total foregut biomass, suggesting that earthworm consumption increased as total prey availability declined. There was also a negative relationship between foregut biomass and beetle numbers, but both quantities and concentrations of earthworm proteins in beetle foreguts were positively related to beetle numbers. This suggests that as beetle activity-density increased, total prey availability declined, or, as prey availability declined, beetles spent more time searching. In these circumstances, beetles fed to a greater extent on earthworms, an acceptable but nonpreferred food item. Earthworms may, therefore, provide an ideal alternative prey for P. melanarius, helping to sustain it when pest numbers are low but allowing it to perform a 'lying-in-wait' strategy, ready to switch back to feeding on pests when they become available.  相似文献   

10.
Collembola comprise a major source of alternative prey to linyphiid spiders in arable fields, helping to sustain and retain these predators as aphid control agents within the crop. Polymerase chain reaction primers were developed for the amplification, from spider gut samples, of DNA from three of the most abundant species of Collembola in wheat crops in Europe, namely Isotoma anglicana, Lepidocyrtus cyaneus and Entomobrya multifasciata. The primers amplified fragments of the mitochondrial cytochrome oxidase subunit I (COI) gene and were designed following alignment of comparable sequences for a range of predator and prey species. Each of the primer pairs proved to be species-specific to a Collembola species, amplifying DNA fragments from 211 to 276 base pairs in length. Following consumption of a single collembolan, prey DNA was detectable in 100% of spiders after 24 h of digestion. We report the first use of DNA-based techniques to detect predation by arthropods on natural populations of prey in the field. All three species of Collembola were consumed by the spiders. By comparing the ratios of the Collembola species in the field with the numbers of spiders that gave positive results for each of those species, it was possible to demonstrate that the spiders were exercising prey choice. Overall, a single target species of Collembola was eaten by 48% of spiders while a further 16% of spiders contained DNA from two different species of Collembola. Preference was particularly evident for I. anglicana, the species most frequently found in spider guts yet the least numerous of the three target species in the field.  相似文献   

11.
The first experiments to clearly demonstrate that DNA techniques might be used to detect predator-prey interactions between arthropods are reported. The accurate modelling of such interactions has depended until now upon a mixture of laboratory experiments, population monitoring and biochemical tests. The latter involve gut-content analyses, and have most recently depended upon the development of prey-specific monoclonal antibodies. Although these are excellent for detecting predation on a target prey, they are impractical for analysing the prey range of a particular predator. Molecular detection depends upon the ability of DNA to resist digestion in the predator gut and of the polymerase chain reaction (PCR) to amplify prey-specific DNA from semidigested material. As a first step, experiments using carabid beetles, Pterostichus cupreus L., as predators and mosquitoes as prey are reported. The target sequences were fully characterized multiple-copy esterase genes from two laboratory strains of Culex quinquefasciatus Say. Although DNA was extracted from homogenates of whole beetles (minus appendages), a 146 bp product could be amplified from both mosquito strains digested in the beetle gut for 28 h. The larger, 263 bp product was detectable for 28 h in one mosquito strain, but could not be amplified after 5 h from the other. Whether the beetles had eaten one mosquito or six, digested for zero or 28 h, the prey were equally detectable. Having demonstrated that shorter, multiple-copy sequences survive digestion for a considerable period in the gut of a predator, the opportunity exists to develop new detection systems for studying predation in the field.  相似文献   

12.
1 Slugs are important pests in many agricultural crops and potential biological control agents are being studied as an alternative to molluscicides. Carabid beetles may be able to reduce slug populations, but their role as control agents may be influenced by the presence of alternative prey. 2 Attacks on the pest slug Deroceras reticulatum (Müller) by the carabid beetles Pterostichus madidus (Fabricius) and Nebria brevicollis (Fabricius) were investigated in the presence of alternative prey (earthworms and Calliphora fly larvae). Consumption of slug eggs and aphids was also investigated. 3 All five prey types were consumed to varying degrees during the experiments. Both beetle species showed a significant preference for Calliphora larvae over slugs. Pterostichus madidus showed a significant preference for earthworms over slugs. No preference was shown between earthworms or Calliphora larvae by P. madidus females or N. brevicollis. However, P. madidus males showed a significant preference for Calliphora larvae over worms. Pterostichus madidus showed no preference between slug eggs and aphids; N. brevicollis showed a significant preference for aphids over slug eggs. 4 The results from this study indicate that generalist beetles will often attack other prey in preferences to adult slugs. Slugs may not be preferred because of their mucus. Other prey items occur frequently in arable soils and generalist carabids may ignore slugs altogether and may only feed on them when slug density is high or other prey are unavailable.  相似文献   

13.
J. R. Hagler  C. M. Durand 《BioControl》1994,39(3-4):257-265
We introduce a new method for immunologically examining predator gut contents. It differs from previously described gut content analyses because it does not require the development of prey-specific antibody probes. Instead, insect prey were marked with a readily available antigen, rabbit immunoglobulin G (IgG). We then assayed predators that had fed on IgG labeled prey with an enzyme-linked immunosorbent assay (ELISA) using goat anti-rabbit IgG. Of the predator species that fed on the IgG labeled prey, 98.8% of those with chewing mouthparts scored positive for IgG 1 h after feeding. Our prey-labeling ELISA was less efficient for detecting IgG prey remains in predators with piercing/sucking mouthparts. Only 29.5% of these individuals scored positive for rabbit IgG in their guts 1 h after feeding. An additional study was conducted to measure the retention time of IgG-labeled prey in the guts of two species of predators with chewing mouthparts. Results from this experiment showed that the retention time varied depending on the predator and prey species examined. Results from these studies indicate that this marking technique could have widespread use for analyzing the gut contents of predators with chewing mouthparts, but it has limited application for those predators with piercing/sucking mouthparts. This article presents the results of research only. Mention of a proprietary product does not constitute an endorsement or recommendation for its use by the USDA.  相似文献   

14.
Floodwater mosquitoes (Diptera: Culicidae) are associated with periodically flooded wet meadows, marshes, and swamps in floodplains of major rivers worldwide, and their larvae are abundant in the shallow parts of flooded areas. The nuisance caused by the blood‐seeking adult female mosquitoes motivates mosquito control. Larviciding with Bacillus thuringiensis israelensis is considered the most environmentally safe method. However, some concern has been raised whether aquatic predatory insects could be indirectly affected by this reduction in a potential vital prey. Top predators in the temporary wetlands in the River Dalälven floodplains are diving beetles (Coleoptera: Dytiscidae), and Aedes sticticus and Ae. vexans are the target species for mosquito control. For detailed studies on this aquatic predator–prey system, we developed a polymerase chain reaction (PCR) assay for detection of mosquito DNA in the guts of medium‐sized diving beetles. Primers were designed for amplifying short mitochondrial DNA fragments of the cytochrome C oxidase subunit I (COI) gene in Ae. sticticus and Ae. vexans, respectively. Primer specificity was confirmed and half‐life detectability of Ae. sticticus DNA in diving beetle guts was derived from a feeding and digestion experiment. The Ae. sticticus DNA within diving beetle guts was detected up to 12 h postfeeding, and half‐life detectability was estimated to 5.6 h. In addition, field caught diving beetles were screened for Ae. sticticus and Ae. vexans DNA and in 14% of the diving beetles one or both mosquito species were detected, showing that these mosquito species are utilized as food by the diving beetles.  相似文献   

15.
Understanding the full diet of natural enemies is necessary for evaluating their role as biocontrol agents, because many enemy species do not only feed on pests but also on other natural enemies. Such intraguild predation can compromise pest control if the consumed enemies are actually better for pest control than their predators. In this study, we used gut metabarcoding to quantify diets of all common arachnid species in Swedish and Spanish apple orchards. For this purpose, we designed new primers that reduce amplification of arachnid predators while retaining high amplification of all prey groups. Results suggest that most arachnids consume a large range of putative pest species on apple but also a high proportion of other natural enemies, where the latter constitute almost a third of all prey sequences. Intraguild predation also varied between regions, with a larger content of heteropteran bugs in arachnid guts from Spanish orchards, but not between orchard types. There was also a tendency for cursorial spiders to have more intraguild prey in the gut than web spiders. Two groups that may be overlooked as important biocontrol agents in apple orchards seem to be theridiid web spiders and opilionids, where the latter had several small-bodied pest species in the gut. These results thus provide important guidance for what arachnid groups should be targets of management actions, even though additional information is needed to quantify all direct and indirect interactions occurring in the complex arthropod food webs in fruit orchards.  相似文献   

16.
The carabid beetle Pterostichus melanarius is a major natural enemy of pests, such as aphids and slugs in agricultural systems. Earthworms are a dominant non‐pest component of the diet of P. melanarius which help sustain the beetles during periods when the pest population is low or absent. In this study we wanted to test whether this predator exercises prey choice among different earthworm species or ecological groups. High levels of genetic diversity within morphological species of earthworm necessitated the development of primers that were specific not just to species but lineages and sub‐lineages within species as well. Gut samples from beetles were analysed using multiplex‐PCR and fluorescent‐labelled primers. Calibratory feeding trials were undertaken to calculate median detection times for prey DNA following ingestion. Extensive testing demonstrated that the primers were species‐specific, that detection periods were negatively related to amplicon size and that meal size had a highly significant effect on detection periods. Monte Carlo simulations showed that, in general, worms were being predated in proportion to their densities in the field with little evidence of prey choice, other than probable avoidance of the larger, deep‐living species. There was no evidence that epigeic species were being taken preferentially in comparison with endogeic species. There was also no evidence that defensive secretions by Allolobophora chlorotica reduced predation pressure on this species by P. melanarius. We concluded that any management system that increases earthworm densities generally, regardless of component species, is likely to be optimal for increasing numbers of this beneficial beetle predator.  相似文献   

17.
Characterization of predator-prey interactions is challenging as researchers have to rely on indirect methods that can be costly, biased and too imprecise to elucidate the complexity of food webs. DNA amplification and sequencing techniques of gut and fecal contents are promising approaches, but their success largely depends on the ability to amplify the taxonomic array of prey consumed and then match prey amplicons with reference sequences. When little a priori information on diet is available or a generalist predator is targeted, versatile primer sets (also referred to as universal or general primers) as opposed to group- or species-specific primer sets are the most powerful to unveil the full range of prey consumed. However, versatile primers are likely to preferentially amplify the predominant, less degraded predator DNA if no manipulation is performed to exclude this confounding DNA template. In this study we compare two approaches that eliminate the confounding predator template: restriction digestion and the use of annealing blocking primers. First, we use a preliminary DNA barcode library provided by the Moorea BIOCODE project to 1) evaluate the cutting frequency of commercially available restriction enzymes and 2) design predator specific annealing blocking primers. We then compare the performance of the two predator removal strategies for the detection of prey templates using two versatile primer sets from the gut contents of two generalist coral reef fish species sampled in Moorea. Our study demonstrates that blocking primers should be preferentially used over restriction digestion for predator DNA removal as they recover greater prey diversity. We also emphasize that a combination of versatile primers may be required to best represent the breadth of a generalist''s diet.  相似文献   

18.
The effects of predators on prey populations can be modified by a number of abiotic factors. Here, we investigated the combined and separate effects of rain and ground-dwelling predators on aphid populations in a microcosm experiment lasting for 21 days, using PCR to analyse the gut content of the predators. Rain significantly dislodged aphids from shoots and ears by 57% and 25%, respectively. The gut content analysis showed that more predators consumed aphids in the rain treatment than without rain, indicating higher availability of aphids to ground-dwelling predators after rain. However, no synergistic effects of rain and ground-dwelling predators on aphid population development could be demonstrated. Rain alone significantly decreased aphid populations by 27%, suggesting that this is a significant mortality factor. Predators alone had no significant effect on aphid numbers, but the gut content analyses showed aphid consumption also in the no-rain treatments, indicating that aphids were available to the predators on the soil surface even without rain. Our results suggest that weather conditions such as rain can modify predator-prey interactions in the field. Employing PCR-based predator gut content analyses proved to be useful as trophic links could be directly verified.  相似文献   

19.
Predation by generalist predators is difficult to study in the field because of the complex effects of positive and negative interactions within and between predator species and guilds. Predation can be monitored by molecular means, through identification of prey DNA within predators. However, polymerase chain reaction (PCR) amplification of prey DNA from predators cannot discriminate between primary and secondary predation (hyperpredation), in which one predator feeds on another that has recently eaten the target prey. Here we quantify, for the first time, the potential error caused by detection of prey DNA following secondary predation, using an aphid-spider-carabid model. First, the aphid Sitobion avenae was fed to the spider Tenuiphantes tenuis and the carabid Pterostichus melanarius, and the postconsumption detection periods, for prey DNA within predators, were calculated. Aphids were then fed to spiders and the spiders to carabids. Aphid DNA was detected in the predators using primers that amplified 245- and 110-bp fragments of the mitochondrial cytochrome oxidase I gene. Fragment size and predator sex had no significant effect on detection periods. Secondary predation could be detected for up to 8 h, when carabids fed on spiders immediately after the latter had consumed aphids. Beetles tested positive up to 4 h after eating spiders that had digested their aphid prey for 4 h. Clearly, the extreme sensitivity of PCR makes detection of secondary predation more likely, and the only reliable answer in future may be to use PCR to identify, in parallel, instances of intraguild predation.  相似文献   

20.
Tandonia budapestensis is one of the most damaging species of slug in the UK , and can cause major losses in potatoes and cereals . No previous attempts appear to have been made to investigate the potential of natural enemies to control this slug . Monoclonal antibodies can be used to analyze the crop contents of predators collected from the field , in order to detect and quantify the remains of major pest species and identify important natural enemies . A species - specific antibody was therefore raised that could distinguish between T. budapestensis and all other molluscs tested . The antibody could detect as little as 5.57 ng of prey protein in an enzyme - linked immunosorbent assay . It could clearly identify the remains of T. budapestensis among the crop contents of the carabid Pterostichus melanarius for more than 26 h at 16 o C , while the half - life of the antigen within the predator was 12.8 h . Such intervals make it a highly suitable antibody probe for quantifying predation during the previous day . The only serious cross - reactivity problem was with earthworms . The antibody can now be used to test predators collected from the field to see if they are indeed consuming this slug , or whether , as suggested by feeding trials , adult T. budapestensis are to some degree toxic to beetles and therefore avoided .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号