首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an analysis of the solubility and hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. We distinguish globular nonamphiphilic forms (Gna) from globular amphiphilic forms (Ga). The Ga forms bind micelles of detergent, as indicated by the following properties. They are converted by mild proteolysis into nonamphiphilic derivatives. Their Stokes radius in the presence of Triton X-100 is approximately 2 nm greater than that of their lytic derivatives. The G2a forms fall in two classes. Class I contains molecules that aggregate in the absence of detergent, when mixed with an AChE-depleted Triton X-100 extract from electric organ. AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which is also detectable in detergent-soluble (DS) extracts of electric lobes and spinal cord. Class II forms never aggregate but only present a slight shift in sedimentation coefficient, in the presence or absence of detergent. This class contains the AChE G2a forms of plasma and of the low-salt-soluble (LSS) fractions from spinal cord and electric lobes. The heart possesses a BuChE G2a form of class II in LSS extracts, as well as a similar G1a form. G4a forms of AChE, which are solubilized only in the presence of detergent and aggregate in the absence of detergent, represent a large proportion of cholinesterase in DS extracts of nerves and spinal cord, together with a smaller component of G4a BuChE. These forms may be converted to nonamphiphilic derivatives by Pronase. Nonaggregating G4a forms exist at low levels in the plasma (BuChE) and in LSS extracts of nerves (BuChE) and spinal cord (AChE).  相似文献   

2.
We report an electrophoretic analysis of the hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. In charge-shift electrophoresis, the rate of electrophoretic migration of globular amphiphilic forms (Ga) is increased at least twofold when the anionic detergent deoxycholate is added to Triton X-100, whereas that of globular nonamphiphilic forms (Gna) is not modified. The G2a forms of the first class, as defined by their aggregation properties, are converted to nonamphiphilic derivatives by phosphatidylinositol phospholipase C (PI-PLC) and human serum phospholipase D (PLD). AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which also exists in very small quantities in detergent-solubilized extracts of electric lobes and spinal cord. They present different electrophoretic mobilities, so that each of these tissues contains a distinct "electromorph," or two in the case of electric organs. The G2a forms of the second class (AChE in plasma, BuChE in heart), as well as G4a forms of AChE and BuChE, are insensitive to PI-PLC and PLD but may be converted to nonamphiphilic derivatives by Pronase.  相似文献   

3.
The membrane-bound acetylcholinesterase (AChE) from the electric organ of Torpedo marmorata was solubilized by Triton X-100 or by treatment with proteinase K and purified to apparent homogeneity by affinity chromatography. Although the two forms differed only slightly in their subunit molecular weight (66,000 and 65,000 daltons, respectively), considerable differences existed between native and digested detergent-soluble AChE. The native enzyme sedimented at 6.5 S in the presence of Triton X-100 and formed aggregates in the absence of detergent. The digested enzyme sedimented at 7.5 S in the absence and in the presence of detergent. In contrast to the detergent-solubilized AChE, the proteolytically derived form neither bound detergent nor required amphiphilic molecules for the expression of catalytic activity. This led to the conclusion that limited digestion of detergent-soluble AChE results in the removal of a small hydrophobic peptide which in vivo is responsible for anchoring the protein to the lipid bilayer.  相似文献   

4.
We analyzed the production of Torpedo marmorata acetylcholinesterase (AChE) in transfected COS cells. We report that the presence of an aspartic acid at position 397, homologous to that observed in other cholinesterases and related enzymes (Krejci, E., N. Duval, A. Chatonnet, P. Vincens, and J. Massoulié. 1991. Proc. Natl. Acad. Sci. USA. 88:6647-6651), is necessary for catalytic activity. The presence of an asparagine in the previously reported cDNA sequence (Sikorav, J.L., E. Krejci, and J. Massoulié. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1865-1873) was most likely due to a cloning error (codon AAC instead of GAC). We expressed the T and H subunits of Torpedo AChE, which differ in their COOH-terminal region and correspond respectively to the collagen-tailed asymmetric forms and to glycophosphatidylinositol-anchored dimers of Torpedo electric organs, as well as a truncated T subunit (T delta), lacking most of the COOH-terminal peptide. The transfected cells synthesized similar amounts of AChE immunoreactive protein at 37 degrees and 27 degrees C. However AChE activity was only produced at 27 degrees C and, even at this temperature, only a small proportion of the protein was active. We analyzed the molecular forms of active AChE produced at 27 degrees C. The H polypeptides generated glycophosphatidylinositol-anchored dimers, resembling the corresponding natural AChE form. The cells also released non-amphiphilic dimers G2na. The T polypeptides generated a series of active forms which are not produced in Torpedo electric organs: G1a, G2a, G4a, and G4na cellular forms and G2a and G4na secreted forms. The amphiphilic forms appeared to correspond to type II forms (Bon, S., J. P. Toutant, K. Méflah, and J. Massoulié. 1988. J. Neurochem. 51:776-785; Bon, S., J. P. Toutant, K. Méflah, and J. Massoulié. 1988. J. Neurochem. 51:786-794), which are abundant in the nervous tissue and muscles of higher vertebrates (Bon, S., T. L. Rosenberry, and J. Massoulié. 1991. Cell. Mol. Neurobiol. 11:157-172). The H and T catalytic subunits are thus sufficient to account for all types of known AChE forms. The truncated T delta subunit yielded only non-amphiphilic monomers, demonstrating the importance of the T COOH-terminal peptide in the formation of oligomers, and in the hydrophobic character of type II forms.  相似文献   

5.
The native molecular forms of acetylcholinesterase (AChE) present in adult Drosophila heads were characterized by sedimentation analysis in sucrose gradients and by nondenaturing electrophoresis. The hydrophobic properties of AChE forms were studied by comparing their migration in the presence of Triton X100, 10-oleyl ether, or sodium deoxycholate, or in the absence of detergent. We examined the polymeric structure of AChE forms by disulfide bridge reduction. We found that the major native molecular form is an amphiphilic dimer which is converted into hydrophilic dimer and monomer on autolysis of the extracts, or into a catalytically active amphiphilic monomer by partial reduction. The latter component exists only as trace amounts in the native enzyme. Two additional minor native forms were identified as hydrophilic dimer and monomer. Although a significant proportion of AChE was only solubilized in high salt, following extractions in low salt, this high salt-soluble fraction contained the same molecular forms as the low salt-soluble fractions: thus, we did not detect any molecular form resembling the asymmetric forms of vertebrate cholinesterases.  相似文献   

6.
We show that human and bovine dopamine beta-hydroxylases (DBH) exist under three main molecular forms: a soluble nonamphiphilic form and two amphiphilic forms. Sedimentation in sucrose gradients and electrophoresis under nondenaturing conditions, by comparison with acetylcholinesterase (AChE), suggest that the three forms are tetramers of the DBH catalytic subunit and bind either no detergent, one detergent micelle, or two detergent micelles. By analogy with the Gna4 and Ga4 AChE forms, we propose to call the nonamphiphilic tetramer Dna4 and the amphiphilic tetramers Da4I and Da4II. In addition to the major tetrameric forms, DBH dimers occur as very minor species, both amphiphilic and nonamphiphilic. Reduction under nondenaturing conditions leads to a partial dissociation of tetramers into dimers, retaining their amphiphilic character. This suggests that the hydrophobic domain is not linked to the subunits through disulfide bonds. The two amphiphilic tetramers are insensitive to phosphatidylinositol phospholipase C, but may be converted into soluble DBH by proteolysis in a stepwise manner; Da4II----Da4I----Dna4. Incubation of soluble DBH with various phospholipids did not produce any amphiphilic form. Several bands corresponding to the catalytic subunits of bovine DBH were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but this multiplicity was not simply correlated with the amphiphilic character of the enzyme. In the case of human DBH, we observed two bands of 78 and 84 kDa. As previously reported by others, the presence of the heavy subunit characterizes the amphiphilic forms of the enzyme. We discuss the nature of the hydrophobic domain, which could be an uncleaved signal peptide, and the organization of the different amphiphilic and nonamphiphilic DBH forms. We present two models in which dimers may possess either one hydrophobic domain or two domains belonging to each subunit; in both cases, a single detergent micelle would be bound per dimer.  相似文献   

7.
Abstract: Acetylcholinesterase (AChE) is secreted from muscle and nerve cells and associates as multimers through intermolecular covalent and noncovalent bonds. The amino acid sequence of the C-terminus is thought to play an important role in these interactions. We generated mutants in the C-terminus of the catalytic T-subunit of chicken AChE to determine the importance of this region to oligomerization and to the amphipathic character of the protein. Wild-type recombinant chicken AChE secreted from human embryonic kidney 293 cells was assembled into dimers and tetramers exclusively. Mutants lacking the C-terminal Cys764, the only cysteine involved in interchain disulfide bonds, showed lower but significant levels of the secreted dimeric and tetrameric forms. A truncated mutant, lacking the C-terminal 39 amino acids, exhibited a severe decrease in content of the multimeric forms, yet small amounts of the dimer were detectable. The amphipathic character was dependent on the state of oligomerization. When analyzed by sucrose gradients, the sedimentation of tetramers was not affected by detergent, but monomers and dimers sedimented more slowly in the presence of detergent. Most of the recombinant wild-type enzyme, shown to be dimeric and tetrameric by sedimentation analysis, was monomeric when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, indicating that much of the secreted oligomeric AChE was not disulfide bonded. These data suggest that disulfide bonding of Cys764 is not required for the catalytic subunit of chicken AChE to form oligomers and that regions outside of the C-terminus contribute to the hydrophobic interactions that are important for stabilizing the oligomeric forms.  相似文献   

8.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

9.
Abstract— We have solubilized two active molecular forms of AChE from rat brain and compared them to the molecular forms solubilized from rat muscle. One of these forms, in muscle, as well as in brain, is easy to solubilize without detergent (ES form–apparent sedimentation coefficient without detergent: 4.6s); the other is hard to solubilize and we obtained a nearly total solubilization only in the presence of detergent (HS form–apparent sedimentation coefficient in presence of detergent: 10.3s). These two molecular forms are glycoprotein in nature. They interact with detergent (Triton X-100), as demonstrated by a comparison of their hydrodynamic parameters (determined by sucrose gradient centrifugation and molecular filtration) in the presence and absence of detergent. In the absence of detergent, their molecular weights are 115,000 for the ES form and 435,000 for the HS form. We did not find the molecular form in brain which seems to be specific to the muscle endplate region. at any stage of its development (EP form–solubilized by detergent–apparent s value in presence of detergent: 16.2s).
During development or maturation of the rat brain, the relative proportion of the HS form to the ES form increases; its absolute amount also increases (by more than a factor of 7 during the first month after birth). The ES form seems to be established at its adult level at the time of birth, before the large increase in the HS form. The proportion of each form in the adult rat brain remains constant: 90% of the total activity is represented by the HS form.  相似文献   

10.
To learn more about the evolution of the cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase in the vertebrates, we investigated the AChE activity of a deuterostome invertebrate, the urochordate Ciona intestinalis, by expressing in vitro a synthetic recombinant cDNA for the enzyme in COS-7 cells. Evidence from kinetics, pharmacology, molecular biology, and molecular modeling confirms that the enzyme is AChE. Sequence analysis and molecular modeling also indicate that the cDNA codes for the AChE(T) subunit, which should be able to produce all three globular forms of AChE: monomers (G(1)), dimers (G(2)), and tetramers (G(4)), and assemble into asymmetric forms in association with the collagenic subunit collagen Q. Using velocity sedimentation on sucrose gradients, we found that all three of the globular forms are either expressed in cells or secreted into the medium. In cell extracts, amphiphilic monomers (G(1)(a)) and non-amphiphilic tetramers (G(4)(na)) are found. Amphiphilic dimers (G(2)(a)) and non-amphiphilic tetramers (G(4)(na)) are secreted into the medium. Co-expression of the catalytic subunit with Rattus norvegicus collagen Q produces the asymmetric A(12) form of the enzyme. Collagenase digestion of the A(12) AChE produces a lytic G(4) form. Notably, only globular forms are present in vivo. This is the first demonstration that an invertebrate AChE is capable of assembling into asymmetric forms. We also performed a phylogenetic analysis of the sequence. We discuss the relevance of our results with respect to the evolution of the ChEs in general, in deuterostome invertebrates, and in chordates including vertebrates.  相似文献   

11.
The presence of acetylcholinesterase (AChE) mRNA and activity in the tissues and cells involved in immune responses prompted us to investigate the level and pattern of AChE components in spleen. AChE activity was higher in mouse spleen (0.46 +/- 0.13 micromol of acetylthiocholine split per hour and per mg protein) than in muscle or heart, but lower than in brain. The spleen was essentially free of butyrylcholinesterase (BuChE) activity. About 40% of spleen AChE was extracted with a saline buffer, and a further 40% with 1% Triton X-100. Sedimentation analyses, the splitting of subunits in AChE dimers, phosphatidylinositol-specific phospholipase C (PIPLC) exposure, and phenyl-agarose chromatography showed that hydrophilic (G1H, 43%) and amphiphilic AChE monomers (G1A, 36%), as well as amphiphilic dimers (G2A, 21%), occurred in spleen. All these molecules bound to fasciculin-2-Sepharose, although the extent of binding was higher for G1H (77%) than for G1A (63%) or G2A (48%) forms. Differences in the extent to which wheat germ lectin (WGA) adsorbed with AChE of mouse spleen and of erythrocyte allowed us to discard the blood origin of spleen AChE activity. A 62 kDa protein was labeled in spleen samples using antibodies against human AChE. The protein was attributed to AChE monomers since its size was the same, regardless of whether disulfide bonds were reduced or not. Since cholinergic stimulation modulates proliferation/maturation of lymphoid cells, AChE may be important for regulating the level of acetylcholine (ACh) in the neighborhood of cholinergic receptors (AChR) in spleen and other lymphoid tissues.  相似文献   

12.
S Bon  J Y Chang  A D Strosberg 《FEBS letters》1986,209(2):206-212
We have determined partial N-terminal sequences of acetylcholinesterase (AChE) catalytic subunits from Torpedo marmorata electric organs and from bovine caudate nucleus. We obtain identical sequences (23 amino acids) for the soluble ('low-salt-soluble' or LSS fraction) and particulate ('detergent-soluble', or DS fraction) amphiphilic dimers (G2 form) and for the asymmetric, collagen-tailed forms ('high-salt-soluble', or HSS fraction, A12 + A8 forms). There are two amino acid differences, at position 3 (Asp/His) and 20 (Ile/Val), with the sequences obtained for T. californica by MacPhee-Quigley et al. [(1985) J. Biol. Chem. 260, 12185-12189] for the soluble G2 form and the lytic G4 form which is derived from asymmetric AChE. The bovine sequence (12 amino acids) presents an identity of 4 amino acids (Glu-Leu-Leu-Val) with that of Torpedo, at positions 5-8 (Torpedo) and 7-10 (bovine). There is also a clear homology with the sequence of human butyrylcholinesterase [(1986) Lockridge et al. J. Biol. Chem., in press] indicating that these enzymes probably derive from a common ancestor.  相似文献   

13.
Chicken muscle and retina, and rat muscle asymmetric acetylcholinesterase (AChE) species were bound to immobilized heparin at 0.4 M NaCl. Binding efficiency was between 50 and 80% for crude fraction I A-forms (AI; muscle), and nearly 100% for fraction II A-forms (AII; muscle and retina). Antibody-affinity-purified AI-forms (chicken) were, however, quantitatively bound to heparin-agarose gels, whereas diisopropylfluorophosphate-inactivated high-salt extracts partially prevented the binding of both AI and AII AChE forms, thus suggesting the presence in crude AI extracts of heparin-like molecules interfering with the tail-heparin interaction. All bound A-forms were progressively displaced from the heparin-agarose columns by increasing salt concentrations, with maximal release at about 0.6 M. They were also efficiently eluted by heparin solutions (1 mg/ml), other glycosaminoglycans being much less effective. Chicken globular AChE forms (G-forms, both low-salt-soluble and detergent-soluble) also bound to immobilized heparin in the absence of salt. Stepwise elution with increasing NaCl concentrations showed maximal release of G-forms at 0.15 M, all globular forms being totally displaced from the column at 0.4 M NaCl. Heparin (1 mg/ml) had the same eluting capacity as 0.4 M NaCl, whereas other glycosaminoglycans were only marginally effective. We conclude that the molecular forms of AChE in these vertebrate species interact with heparin, at salt concentrations that are characteristic for asymmetric and globular forms. Within the A and G molecular form groups, no differences were found in the behavior of the different fractions or subtypes, provided that the enzyme samples were free of interfering molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   

15.
Abstract: Two acetylcholinesterases (AChEs), AChE1 and AChE2, differing in substrate specificity and in some aspects of inhibitor sensitivity, have been characterized in the mosquito Culex pipiens . The results of ultracentrifugation in sucrose gradients and nondenaturing gel electrophoresis of AChE activity peak fractions show that each AChE is present as two molecular forms: one amphiphilic dimer possessing a glycolipid anchor and one hydrophilic dimer that does not interact with nondenaturing detergents. Treatment by phosphatidylinositol-specific phospholipase C converts each type of amphiphilic dimer into the corresponding hydrophilic dimer. Molecular forms of AChE1 have a lower electrophoretic mobility than those of AChE2. However, amphiphilic dimers and hydrophilic dimers have similar sedimentation coefficients (5.5S and 6.5S, respectively). AChE1 and AChE2 dimers, amphiphilic or hydrophilic, resist dithiothreitol reduction under conditions that allow reduction of Drosophila AChE dimers. In the insecticide-susceptible strain S-LAB, AChE1 is inhibited by 5 × 10−4 M propoxur (a carbamate insecticide), whereas AChE2 is resistant. All animals are killed by this concentration of propoxur, indicating that only AChE1 fulfills the physiological function of neurotransmitter hydrolysis at synapses. In the insecticide-resistant strain, MSE, there is no mortality after exposure to 5 × 10−4 M propoxur: AChE2 sensitivity to propoxur is unchanged, whereas AChE1 is now resistant to 5 × 10−4 M propoxur. The possibility that AChE1 and AChE2 are products of tissue-specific posttranslational modifications of a single gene is discussed, but we suggest, based on recent results obtained at the molecular level in mosquitoes, that they are encoded by two different genes.  相似文献   

16.
To obtain information about the evolution of acetylcholinesterase (AChE), we undertook a study of the enzyme from the skeletal muscle of the lamprey Petromyzon marinus, a primitive vertebrate. We found that the cholinesterase activity of lamprey muscle is due to AChE, not pseudocholinesterase; the enzyme was inhibited by 1,5-bis(4-allyldimethylammonium phenyl) pentane-3-one (BW284C51), but not by tetramonoisopropyl pyrophosphortetramide (iso-OMPA) or ethopropazine. Also, the enzyme had a high affinity for acetylthiocholine and was inhibited by high concentrations of substrate. A large fraction of the AChE was found to be glycoprotein, since it was precipitated by concanavalin A-agarose. Optimal extraction of AChE was obtained in a high-salt detergent-containing buffer; fractional amounts of enzyme were extracted in buffers lacking salt and/or detergent. These data suggest that globular and asymmetric forms of AChE are present. On sucrose gradients, enzyme that was extracted in high-salt detergent-containing buffer sedimented as a broad peak of activity corresponding to G4; additionally, there was usually a peak corresponding to A12. Sequential extraction of AChE in conjunction with velocity sedimentation resolved minor forms of AChE and revealed that the G1, G2, G4, A4, A8, and A12 forms of AChE could be obtained from the muscle. The identity of the forms was confirmed through high-salt precipitation and collagenase digestion. The asymmetric forms of AChE were precipitated in low ionic strength buffer, and their sedimentation coefficients were shifted to higher values by collagenase digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Differences in the glycosylation of acetylcholinesterase (AChE) subunits which form the dimers of mouse erythrocyte and a suitable procedure to purify the enzyme by affinity chromatography in edrophonium-Sepharose are described. AChE was extracted ( approximately 80%) from erythrocytes with Triton X-100 and sedimentation analyses showed the existence of amphiphilic AChE dimers in the extract. The AChE dimers were converted into monomers by reducing the disulfide bond which links the enzyme subunits. Lectin interaction studies revealed that most of the dimers were bound by concanavalin A (Con A) (90-95%), Lens culinaris agglutinin (LCA) (90-95%), and wheat germ (Triticum vulgaris) agglutinin (WGA) (70-75%), and a small fraction by Ricinus communis agglutinin (RCA(120)) (25-30%). The lower level of binding of the AChE monomers with WGA (55-60%), and especially with RCA (10-15%), with respect to the dimers, reflected heterogeneity in the sugar composition of the glycans linked to each AChE subunit in dimers. Forty per cent of the amphiphilic AChE dimers lost the glycosylphosphatidylinositol (GPI) and, therefore, were converted into hydrophilic forms, by incubation with phosphatidylinositol-specific phospholipase C (PIPLC), which permitted their separation from the amphiphilic variants in octyl-Sepharose. Only the hydrophilic dimers, either isolated or mixed with the amphiphilic forms, were bound by edrophonium-Sepharose, which allowed their purification (4800-fold) with a specific activity of 7700 U/mg protein. The identification of a single protein band of 66 kDa in gel electrophoresis demonstrates that the procedure can be used for the purification of GPI-anchored AChE, providing that the attached glycolipid domain is susceptible to PIPLC.  相似文献   

18.
Structure of heparin-derived tetrasaccharides.   总被引:3,自引:2,他引:1       下载免费PDF全文
Quantitative solubilization of the phospholipid-associated form of acetylcholinesterase (AChE) from Torpedo electric organ can be achieved in the absence of detergent by treatment with phosphatidylinositol-specific phospholipase C (PIPLC) from Staphylococcus aureus [Futerman, Low & Silman (1983) Neurosci. Lett. 40, 85-89]. The sedimentation coefficient on sucrose gradients of AChE solubilized in detergents (DSAChE) varies with the detergent employed. However, the coefficient of AChE directly solubilized by PIPLC is not changed by detergents. Furthermore, PIPLC can abolish the detergent-sensitivity of the sedimentation coefficient of DSAChE purified by affinity chromatography, suggesting that one or more molecules of phosphatidylinositol (PI) are co-solubilized with DSAChE and remain attached throughout purification. DSAChE binds to phospholipid liposomes, whereas PIPLC-solubilized AChE and DSAChE treated with PIPLC do not bind even to liposomes containing PI. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis shows that PIPLC-solubilized AChE, like unmodified DSAChE, is a catalytic subunit dimer; electrophoresis in the presence of reducing agent reveals no detectable difference in the Mr of the catalytic subunit of unmodified DSAChE, of AChE solubilized by PIPLC and of AChE solubilized by Proteinase K. The results presented suggest that DSAChE is anchored to the plasma membrane by one or more PI molecules which are tightly attached to a short amino acid sequence at one end of the catalytic subunit polypeptide.  相似文献   

19.
We analyzed the molecular forms of acetylcholinesterase (AChE) in the nematode Steinernema carpocapsae. Two major AChEs are involved in acetylcholine hydrolysis. The first class of AChE is highly sensitive to eserine (IC50 = 0.05 microM). The corresponding molecular forms are: an amphiphilic 14S form converted into a hydrophilic 14.5S form by mild proteolysis and two hydrophilic 12S and 7S forms. Reduction of the amphiphilic 14S form with 10 mM dithiothreitol produces hydrophilic 7S and 4S forms, indicating that it is an oligomer of hydrophilic catalytic subunits linked by disulfide bond(s) to a hydrophobic structural element that confers the amphiphilicity to the complex. Sedimentation coefficients suggest that 4S, 7S, 12S forms correspond to hydrophilic monomer, dimer, tetramer and that the 14S form is also a tetramer linked to one structural element. The second class of AChE is less sensitive to eserine (IC50 = 0.1 mM). Corresponding molecular forms are hydrophilic and amphiphilic 4S forms (monomers) and a major amphiphilic 7S form converted into a hydrophilic dimer by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C. This amphiphilic 7S form thus possesses a glycolipid anchor. It appears that Steinernema (a very primitive invertebrate) presents AChEs with two types of membrane association that closely resemble those described for amphiphilic G2 and G4 forms of AChE in more evolved animals.  相似文献   

20.
We describe the acetylcholinesterase polymorphisms of two bivalve molluscs, Adamussium colbecki and Pecten jacobaeus. The research was aimed to point out differences in the expression of pesticide-resistant acetylcholinesterase forms in organisms living in different ecosystems such as the Ross Sea (Antarctica) and the Mediterranean Sea. In A. colbecki, distinct acetylcholinesterase molecular forms were purified and characterized from spontaneously soluble, low-salt-soluble and low-salt-Triton extracts from adductor muscle and gills. They consist of two non-amphiphilic acetylcholinesterases (G(2), G(4)) and an amphiphilic-phosphatidylinositol-membrane-anchored form (G(2)); a further amphiphilic-low-salt-soluble G(2) acetylcholinesterase was found only in adductor muscle. In the corresponding tissues of P. jacobaeus, we found a non-amphiphilic G(4) and an amphiphilic G(2) acetylcholinesterase; amphiphilic-low-salt-soluble acetylcholinesterases (G(2)) are completely lacking. Such results are related with differences in cell membrane lipid compositions. In both scallops, all non-amphiphilic AChEs are resistant to used pesticides. Differently, the adductor muscle amphiphilic forms are resistant to carbamate eserine and organophosphate diisopropylfluorophosphate, but sensitive to organophoshate azamethiphos. In the gills of P. jacobaeus, amphiphilic G(2) forms are sensitive to all three pesticides, while the corresponding forms of A. colbecki are sensitive to eserine and diisopropylfluorophosphate, but resistant to azamethiphos. Results indicate that organophosphate and/or carbamate resistant AChE forms are present in species living in far different and far away environments. The possibility that these AChE forms could have ensued from a common origin and have been spread globally by migration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号