首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Amaranthus hypochondriacus ovules are of the crassinucellate type, having several layers of nucellus cells between the micropyle and the embryo sac through which pollen tubes have to penetrate. The ultrastructural features of the micropylar nucellus cells appear to reflect cells with high metabolic activity. With the monoclonal antibodies MAC207 and JIM8 (against arabinogalactan proteins) we have shown that the presence of the two epitopes was different in the gametophytic tissues and embryo sac. The young embryo and suspensor cells are reactive only to Mab JIM8. The selective presence and localization of these two epitopes was also demonstrated in the micropylar nucellus cells. The expression of these arabinogalactan proteins in this ovule seems to be closely aligned with the pathway of the pollen tube, possibly providing directional guides for tube growth inside the ovule.  相似文献   

2.
Compared with pollen tubes of conifers, gnetophytes, and angiosperms, the pollen tube of cycads is exclusively a vegetative structure, uninvolved with the siphonogamous conduction of sperm to an egg. The cycad pollen tube appears to function primarily to obtain nutrients for the extensive growth and development of the male gametophyte. Previous workers have suggested that, similar to an haustorial fungus, the cycad pollen tube penetrates the reproductive tissues of the sporophyte by enzymatically destroying nucellar cells. These earlier studies did not document the precise structural relationship between the growing male gametophyte and its “host” tissue, the nucellus. Pollen tube growth, and its relation to the nucellus, was examined in Zamia furfuracea with light and transmission electron microscopy. Following germination, the pollen tube of Zamia furfuracea grows intercellularly through the subepidermal layers of the micropylar apex of the nucellus. Electron micrographs clearly show additional localized outgrowths of the pollen tube penetrating the walls of individual nucellar cells. Intracellular haustorial growth ultimately leads to the complete destruction of each penetrated cell, and appears to induce the degeneration of proximal unpenetrated nucellar cells. This pattern of intracellular penetration of the sporophyte by the male gametophyte in Zamia furfuracea is fundamentally different from what has been described in any other major group of seed plants (where intercellular growth of the male gametophyte is the rule), and suggests that the heterotrophic and tissue-specific relationships that male gametophytes of seed plants have with their host sporophytes are substantially more diverse than had previously been known.  相似文献   

3.
Ovular morphology was examined ultrastructurally inPseudotsuga menziesii to determine the effects of the ovule on pollen development. Vesicles containing lipid-like substances traverse cell walls of the inner epidemis of the integument and release their contents at the integument surface to form the integumentary membrane. A major aqueous secretion from the integument into the micropylar canal is proposed to occur by the movement of the integumentary membrane and its invaginations towards the center of the micropylar canal. The cellular degeneration of the nucellar apex results from the breakdown of vacuoles. After this degeneration, electron-dense substances move from the prothallial cells of the female gametophyte towards the nucellus, and many morphological changes in the nucellus, prothallial cells, and micropylar canal take place simultaneously. We interpret these changes to result from another major secretion from the prothallial cells. Egg cytoplasm appears to disorganize for a short time. Simultaneously, substantial amounts of electron dense-substances in the prothallial cells and lipid-like substances in surface cell walls of the female gametophyte move towards the nucellus as components of the third major secretion.  相似文献   

4.
Summary In the young ovule of Welwitschia mirabilis the nucellar apex is dome shaped and starch begins to accumulate near the female gametophyte. With the degeneration of the cells of the nucellar apex, a pollen chamber is formed, which contains the micropylar fluid. Starch storage increases considerably in the upper part of the nucellus. Pollen drop emission is not a rhythmic process, and pollination does not produce the rapid withdrawal of droplets. The micropylar drop consists almost entirely of sugars, uronic acids and a very small amount of free amino acids and enzymes. The mechanism of micropylar drop secretion and its probable role in the process of pollination is discussed.This work was supported by a grant from MURST 40%  相似文献   

5.
The micropylar exudate of Gasteria verrucosa (Mill.) H. Duval was studied using light and electron microscopic techniques. Ovules may contain micropylar exudate before stigma receptivity. During successive phases of stigma receptivity, the number of ovules with micropylar exudate and the amount of micropylar exudate per ovule increases. At the late phase of stigma receptivity, large amounts of micropylar exudate with a smooth to cauliflowerlike appearance were observed. Micropylar exudate is viscous and contains, among other components, proteins and carbohydrates. At all stages of the stigma investigated, ovules situated at the base of the ovary contain a larger quantity of micropylar exudate than those at the top. The appearance of micropylar exudate is related to the degree of development of the embryo sac and it originates primarily from the filiform apparatus. It is assumed that an uptake of water by the ovule initiates the outflow of micropylar exudate from the filiform apparatus into the micropyle. Both ovular pollen tube ingrowth and seed set mark the optimum pollination stage of the stigma, which for both events lies around the onset of stigma receptivity. When pollen tubes have reached the ovary, young micropylar exudate stimulates their growth rate. The presence of micropylar exudate seems to be a requirement for pollen tube penetration, and an interaction between the pollen tube and the micropylar exudate has been proposed. Possibly, the micropylar exudate serves as a nutritional source and, in an optimum condition, as an attractant for approaching pollen tubes.  相似文献   

6.
I n vitro and in vivo rehydration and germination in Cupressus arizonica pollen were examined using light and scanning electron microscopy. Shed pollen has 12.6% water content, which reduced to 8.2% after dispersal, and this latter pollen survived for some months at room temperature and for years at −10 °C. Rehydration requires breaking of the sporoderm walls and depends on the composition and pH of the rehydration medium. Acidity restrains the breakage, while alkalinity promotes it. Pollen division follows exine shedding and requires the persistence of the mucilaginous layer; hence, pH values countering these outcomes prevent division. Division results in a large and a small cell separated by a callosic wall. A pollen tube develops from the innermost intine of the large cell, which is callosic, and extends into the mucilaginous middle intine. The percentage germination never exceeded 17% in all tested media. In vivo , pollen rehydrates and casts off the exine in the micropylar drop. Drop withdrawal brings pollen to the apical nucellar cells that degenerate in the meantime, and it leaves a deposit on the surface of the micropylar canal. After contaction of the nucellar cells, the pollen flattens and its mucilaginous layer shrinks and disappears. This occurs simultaneously with sealing of the micropylar canal. During this time, pollen divides asymmetrically without the callosic wall, and the larger cell develops a tube in the interface with the nucellus. Only some pollen grains accomplish adhesion to the nucellus and germinate. The in vitro and in vivo developmental stages are discussed.  相似文献   

7.
Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) ovules were used to study the method of pollen tube formation and penetration of the nucellus, the movement of the body cell down the pollen tube and development of the archegonia. No pollination drop forms but nucellar tip cells produce a minute secretion that may initiate pollen tube formation. Pollen tubes penetrate the nucellus causing degeneration of nucellar cells in contact with the pollen tube tip. The body cell becomes highly lobed and the tube cytoplasm forms thin sheets between the lobes. This may be the mechanism by which the large body cell is pulled down the narrow pollen tube. Body cell plastids and mitochondria remain unaltered during pollen tube growth, whereas tube cell organelles show signs of degeneration. The pollen tube penetrates the megaspore wall and settles in the archegonial chamber. During pollen elongation and pollen tube growth the egg matured. Egg cell plastids were transformed into large inclusions which filled the periphery of the egg while mitochondria migrated to the perinuclear zone. The neck cells, ventral canal cell and archegonial jacket cells are described. The significance of the body cell and egg cell ultrastructure is discussed in light of recent restriction fragment length polymorphism studies of plastid and mitochondrial inheritance in the Pinaceae.  相似文献   

8.
The ovules of Amentotaxus are 2–2.5 cm in length and about 1.3 cm in width. Aril, which contains about 14—17 secretory canals in transection, is com- posed of parenchyma. The vascular bundles are absent in aril. The integument is com- posed of ceils of outer, middle, and inner regions. The middle region of the integument is about 10 cells in thickness. The Integuments are basally parenchymatous before pollination and then the cells become elongating and thickenning in middle region after pollination. Finally the micropylar canal is forced to be closed. In addition, there are 8–14 vascular bundles with centripetal xylem arranged in a ring in integument. One of the most remarkable feature of the ovule is that there is a pollen chamber formed at the top of nucellus before pollination. At this time because epidermis of nucellus does not disintegrate, the pollen chamber looks like conical in longitudinal section. After pollination the pollen chamber was becoming closed due to elongation and thickenning of cells in the middle region of integument. At the base of ovule there are 4–5 pairs of bracts which contain a larger secretory cavity and a centripetal xylem in a vascular bundle. It is interesting that wax layer of 30–40 μm thick is covered on the surface of integument, aril and bract. Usually 3–4 microsporangia which are hypodermal in origin, occur in abaxial side of a microsporophyll. In some cases the tapetum is partly enlarging and extruding into the developing tetrahedral tetrads. The mature pollen comprises an antheridial initial and a tube cell. About 20 pollen grains may germinate in the same ovule. The megaspore divide successively 8 times to produce 256 nuclei and then cell wall formation takes place. The female gametophyte is about 830–908 μm in length and 500 μm in width. The archegonia are single, terminal, and 6–7 in number. The mature archgonium, with ventral canal nucleus, is about 430 μm in length and 80–108 μm in width. The female gametophyte is often growing against the upper part of the nuceilus and makes the cells of the latter gradually to be disintegrated. The ovule construction of Amentotaxus is in some degree similar to that of Ginkgo in having a comparatively well developed pollen chamber. The mature pollen of Amentotaxus, which is similar to that of Cephalotaxus is composed of 2-cells. In sum, Amentotaxus perhaps is the most primitive genus in Taxaceae and it is closely related to Cephalotaxus.  相似文献   

9.
10.
水稻双受精过程的细胞形态学及时间进程的观察   总被引:1,自引:0,他引:1  
丁建庭  申家恒  李伟  杨虹 《植物学报》2009,44(4):473-483
应用常规石蜡切片和荧光显微镜观察水稻(Oryz a sativa)受精过程中雌雄性细胞融合时的形态特征及时间进程, 确定合子期, 为花粉管通道转基因技术的实施提供理论依据。结果表明: 授粉后, 花粉随即萌发, 花粉管进入羽毛状柱头分支结构的细胞间隙, 继续生长于花柱至子房顶部的引导组织的细胞间隙中, 而后进入子房, 在子房壁与外珠被之间的缝隙中向珠孔方向生长, 花粉与花粉管均具有明显的绿色荧光。花粉管经珠孔及珠心表皮细胞间隙进入一个助细胞, 释放精子。精子释放前, 两极核移向卵细胞的合点端; 两精子释放于卵细胞与中央细胞的间隙后, 先后脱去细胞质, 然后分别移向卵核和极核, 移向卵核的精核快于移向极核的精核; 精核与两极核在向反足细胞团方向移动的过程中完成雌雄核融合。大量图片显示了雌雄性核融合的详细过程以及多精受精现象。水稻受精过程经历的时间表如下: 授粉后, 花粉在柱头萌发; 花粉萌发至花粉管进入珠孔大约需要0.5小时; 授粉后0.5小时左右, 花粉管进入一个助细胞, 释放精子; 授粉后0.5-2.5小时, 精卵融合形成合子; 授粉后约10.0小时, 合子第1次分裂, 合子期为授粉后2.5-10.0小时; 授粉后1.0-3.0小时, 精核与两极核融合; 授粉后约5.0小时, 初生胚乳核分裂。  相似文献   

11.
应用常规石蜡切片和荧光显微镜观察水稻(Oryza sativa)受精过程中雌雄性细胞融合时的形态特征及时间进程,确定合子期,为花粉管通道转基因技术的实施提供理论依据。结果表明:授粉后,花粉随即萌发,花粉管进入羽毛状柱头分支结构的细胞间隙,继续生长于花柱至子房顶部的引导组织的细胞间隙中,而后进入子房,在子房壁与外珠被之间的缝隙中向珠孔方向生长,花粉与花粉管均具有明显的绿色荧光。花粉管经珠孔及珠心表皮细胞间隙进入一个助细胞,释放精子。精子释放前,两极核移向卵细胞的合点端:两精子释放于卵细胞与中央细胞的间隙后,先后脱去细胞质,然后分别移向卵核和极核,移向卵核的精核快于移向极核的精核:精核与两极核在向反足细胞团方向移动的过程中完成雌雄核融合。大量图片显示了雌雄性核融合的详细过程以及多精受精现象。水稻受精过程经历的时间表如下:授粉后,花粉在柱头萌发:花粉萌发至花粉管进入珠孔大约需要0.5小时:授粉后0.54,时左右,花粉管进入一个助细胞,释放精子:授粉后0.5—2.5小时,精卵融合形成合子:授粉后约10.0小时,合子第1次分裂,合子期为授粉后2.5-10.04,时:授粉后1.0-3.04,时,精核与两极核融合:授粉后约5.0小时,初生胚乳核分裂。’  相似文献   

12.
Cell lineages were followed throughout floral ontogeny in cytochimeral peaches [Prunus persica (L.) Batsch] by observations of chromosome number and nuclear size. The contribution of the three apical cell layers to the organs of the flowers was determined. In addition to the epidermal tissue, L-I produced several layers of cells at the suture of the ovary wall, seven or eight cell layers of the nucellus at the micropylar end of the ovule, and almost all of the integuments. L-II gave rise to extensive internal tissue in the calyx and corolla tubes and to all internal tissue of the petal, anther, and ovule except for a small region at the base of the latter two organs. L-III contributed significantly only to the central region of the calyx and corolla tubes and the ovary wall. A single apical layer gave rise to several different tissues, and at times a single tissue was made up of cells from 1–3 different apical layers. Within the limits imposed by their genotype the final form of differentiated cells was determined by their position in the mature organ and not by the apical layer from which they were derived. The corolla tube was shown to be a single structure, congenitally fused, and the ovary to be ontogenetically fused at the suture.  相似文献   

13.
The pollination process in loblolly pine has been examined over several years, both in the field (seed orchards) and experimentally on greenhouse-grown material. Female strobili are receptive to pollination for periods of a wk or more. Initially, background pollen from outside the seed orchard is the main source of pollen but as peak receptivity approaches, pollen from the stand itself predominates especially in older orchards. Consequently, strobili can receive pollen both from outside the orchard as well as from within. The pollen lands on the micropylar horns where it is transferred through the micropyle onto the nucellus by either rainfall or the pollen drop, whichever comes first. Since the pollen drop does not occur until the latter part of the receptive period, rainfall is the most likely transfer agent and pollen flotation is vital if rain occurs. Early arriving pollen does not appear to have an advantage over later arriving pollen for uptake onto the nucellus, even if rain follows the first pollination immediately. Therefore, total pollination of the strobilus can result from both distant and nearby pollen sources.  相似文献   

14.
王秀玲  高新起 《广西植物》2002,22(3):242-245
西瓜胚乳细胞衰退过程中 ,质膜、液泡膜突起、形成体积较大的囊泡 ,内质网断裂形成体积较小的囊泡 ;细胞质和细胞核降解形成电子致密的碎片沿细胞壁分布 ;细胞壁在衰退过程逐渐变薄 ,由于部分区域分解而使整个壁呈波浪型 ,细胞降解后的物质可直接穿越薄壁处或通过宽约 5 0 nm的胞间连丝向近胚端的胚乳细胞转移。胚乳与珠心组织分界壁 -胚囊壁上有发达的壁内突 ,有利于珠心组织内的物质向胚乳内转运 ;胚乳发育早期与胚共有的壁上内外两侧均有胼胝质沉积 ,壁上无外连丝型的胞间连丝存在 ,胚乳发育后期共有壁上的胼胝质消失 ,胚乳细胞降解物可穿越共有壁进入胚细胞内。实验结果表明西瓜胚乳在发育后期对胚的发育具有重要的作用。  相似文献   

15.
Cephalotaxus wilsoniana Hay, is endemic to Taiwan. This study was performed morphologically and anatomically to investigate reproduction in this species for the purpose of conservation. The duration from reproductive bud formation to fertilization in C. wilsoniana lasts about one year and five months. Buds are initiated in late January and differentiate into one vegetative bud and 3 female cones in late February. A female cone is constructed with 4 pairs of decussate opposite bracts. A small ridge-like secondary axis sits on the axil of each bract. Two ovules are borne on both sides of each secondary axis. A lysogenous pollen chamber begins to be formed from the degenerative tissues on the top end of the nucellus in early March. In late March the megasporogenous tissue is differentiated in the core center of the nucellus, and the micropyle closes gradually after pollination. By late July, pollen tubes have developed in the pollen chamber, and the megaspore mother cell appears. Then the functional megaspore becomes active in mid-October. The 8 free nucleate macrogametophyte appears in late December. From January to late March of the following year, the elliptical cyst-like female gametophyte keeps growing through continuous divisions of its free nuclei. The cyst layer of protoplast thickens in early April. In mid-April, cell walls begin to form among free nuclei. The archegonia are initiated in late April. Pollen tubes extend their tips to the macrogametophyte in early May, and each tube with 2 spermatozoids reaches a mature archegonium with an egg needed to perform fertilization in late May. Generally, only 1-(3) ovules in each cone can become mature.  相似文献   

16.
The micropylar secrete of the ovules of Crocus vernus ssp. vernus was analyzed for the Ca+2 content by atomic absorption, and its capacity to germinate and attract pollen was tested by pollinating explanted ovules, and incubating in absence of culture medium. The results display a Ca+2 concentration of 28.9 mM in the micropylar secrete. On this secrete both compatible- and incompatible pollen germinates with a mean percentage of 53.7%, and their pollen tubes enter the micropylar canal with percentages of 32.3% to 21.0%. In situ the ovules fail to attract tubes of incompatible pollen. The results are discussed in relation to the ovule receptivity and the guided growth of pollen tubes, substantiating the model of the tropic growth towards increasing calcium concentrations.  相似文献   

17.
Endo-beta-1,4-D-glucanases (EGases) are a widespread and vital group of glycosyl hydrolases that generally break the beta-1,4-glucosyl linkages. Studies of plant EGases have mainly been concentrated on vegetative growth, while little is currently known about their role in reproductive processes. Using the GUS reporter aided analysis of promoter activities, we identified the expression patterns of two putative Arabidopsis EGases genes (At3g43860 and At4g39000) whose promoters conferred specific localization of the GUS activity in reproductive organs. We found that At3g43860, which is similar to KOR in its protein structural organization, is expressed in mature pollen and the pollen tube, implying that it may have a role in pollen and pollen tube growth. At4g39000 was found to be activated in the developing ovules and seeds, especially at the micropylar end of the inner integuments and nucellus in a proximal-distal pattern. Our results suggested that the two EGases play specific roles in Arabidopsis sexual reproduction.  相似文献   

18.
Pollen movement in the micropylar canal ofLarix and its simulation   总被引:1,自引:1,他引:0  
InLarix pollen captured by the ovule and rested at the distal end of the micropylar canal is transferred upward to the nucellus before it develops a pollen tube. This upward movement occurs after the canal is filled with secreted fluid, despite the fact that the pollen sinks in the fluid. We examined the mechanism of the movement based on the morphology of the canal and its simulation using pipettes. When a water column moves upward in a waxed pipette, suspended particles also move upward carried by the meniscus. InL. x eurolepis the inner surface of the integument lining the micropylar canal is coated by a cuticle layer. This layer is further coated by an integumentary membrane before the fluid is secreted. This membrane, however, becomes distorted or disappears during fluid secretion. The exposed cuticle and the degenerated hydrophilic nucellar apex may facilitate the movement of the meniscus toward the nucellus as in the simulated pipette. Pollen is interpreted to move by being carried by the meniscus when the fluid recedes.  相似文献   

19.
A study of the pollen tube pathway in Lilium leucanthum var. centifolium and in L. regale reveals that the entire pathway from stigma to ovule is lined with cytologically unique stigmatoid cells. Assays for chemotropic activity of tissues and exudates along the pathway of pollinated or unpollinated pistils showed that onset of chemotropic activity progressed basipetally (and, when pollinated, in advance of the pollen tubes), commencing at the stigma 3-5 days before anthesis and appearing in the ovules 1-2 days after anthesis. Activity persists about 10 days in ovules of pollinated pistils and for 14-16 days in ovules of non-pollinated pistils. Attempts to localize the source of the chemotropic factor showed that gynoecial tissues bearing stigmatoid cells are chemo-tropically active while slices of style or ovary wall lacking stigmatoid cells are inactive. When ovules were sliced transversely and the micropylar and chalazal halves assayed, only the micropylar half showed activity. We suggest that the ovules and the stigmatoid tissue along the pollen tube pathway are the sources of the chemotropic factor responsible for the directional growth of the pollen tube.  相似文献   

20.
Reproductive isolation is a prerequisite to form and maintain a new species. Multiple prezygotic and postzygotic reproductive isolation barriers have been reported in plants. In the model plant, Arabidopsis thaliana conspecific pollen tube precedence controlled by AtLURE1/PRK6-mediated signaling has been recently reported as a major prezygotic reproductive isolation barrier. By accelerating emergence of own pollen tubes from the transmitting tract, A. thaliana ovules promote self-fertilization and thus prevent fertilization by a different species. Taking advantage of a septuple atlure1null mutant, we now report on the role of AtLURE1/PRK6-mediated signaling for micropylar pollen tube guidance. Compared with wild-type (WT) ovules, atlure1null ovules displayed remarkably reduced micropylar pollen tube attraction efficiencies in modified semi-in vivo A. thaliana ovule targeting assays. However, when prk6 mutant pollen tubes were applied, atlure1null ovules showed micropylar attraction efficiencies comparable to that of WT ovules. These findings indicate that AtLURE1/PRK6-mediated signaling regulates micropylar pollen tube attraction in addition to promoting emergence of own pollen tubes from the transmitting tract. Moreover, semi-in vivo ovule targeting competition assays with the same amount of pollen grains from both A. thaliana and Arabidopsis lyrata showed that A. thaliana WT and xiuqiu mutant ovules are mainly targeted by own pollen tubes and that atlure1null mutant ovules are also entered to a large extent by A. lyrata pollen tubes. Taken together, we report that AtLURE1/PRK6-mediated signaling promotes conspecific micropylar pollen tube attraction representing an additional prezygotic isolation barrier.

A modified ovule targeting assay revealed that AtLURE1/PRK6-mediated signaling promotes micropylar guidance of Arabidopsis thaliana pollen tubes while discriminating tubes of related Arabidopsis lyrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号