首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methylotrophic yeast Pichia methanolica can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase (AUG1) promoter. Methanol concentrations during the induction phase directly affect cellular growth and protein yield. Various methanol concentrations controlled by an on-line monitoring and control system were investigated in mixed glucose/methanol fed-batch cultures of P. methanolica expressing the human transferrin N-lobe protein. The PMAD18 P. methanolica strain utilized is a knock-out for the chromosomal AUG1 gene locus, resulting in a slow methanol utilization phenotype. Maximum growth of 100 g of dry cell weight per liter of culture was observed in cultures grown at 1.0% (v/v) methanol concentration. Maximum recombinant gene expression was observed for cultures controlled at 0.7% (v/v) methanol concentration, resulting in maximum volumetric production of 450 mg of transferrin per liter after 72 h of elapsed fermentation time.  相似文献   

2.
The dependence of the specific growth rate of Candida boidinii 11 Bh on methanol concentration follows Monod-type kinetics only in a narrow concentration range (0--0.8 v/v), with a saturation constant of about 19 mmol. With a further increase in methanol concentration of up to 3% v/v, the specific growth rate remains constant. Beyond this level, the growth rate gradually drops to zero, reaching the threshold value at 7.8% v/v. The specific growth rate is also strongly dependent on the size of the inoculum. The biomass yield decreases with an increase in the methanol concentration. Formaldehyde and formic acid, oxidative products of methanol, approximately 100 and ten times, respectively, more toxic to growth than the original substrate.  相似文献   

3.
探索了电子嗅传感仪直接通过发酵尾气进行发酵液中甲醇浓度在线检测的方法,建立了毕赤酵母表达糖化酶过程中甲醇浓度的自动化反馈补料控制模型,可准确实现发酵过程中甲醇浓度的精确控制;研究表明,当利用电子嗅将培养液中甲醇浓度稳定控制在(890±35)ppm水平下,发酵诱导培养到128h时目的蛋白糖化酶酶活达到了8 153U/ml,与甲醇浓度控制在(350±26)ppm时的发酵水平相比提升了48.8%。该方法具有无需前处理、与发酵液非接触、快速和准确性的优点,为提升工程酵母在工业发酵培养过程工艺的优化控制具有重要的指导作用。  相似文献   

4.
Immunosensor systems have been developed for the rapid determination of 1-naphthol. In this work, the comparison of performance of immunosensors working in aqueous and organic media was done. Direct, indirect and capture formats were studied. Immunoreagents were immobilized on controlled pore glass (CPG), hidroxysuccinimide agarose gel or on azlactone Protein A/G supports. The Protein A/G-based sensor showed the best performance. In aqueous media, a LOD of 16.2 microg l(-1) and a DR of 33.7-586.6 microg l(-1) were achieved employing Tween 20 at a concentration ranging from 0.01 to 0.05% v/v. Maximum sensitivity was reached with 0.025% of surfactant. Binary mixtures of methanol or acetonitrile with aqueous buffer and ternary mixtures of methanol/isopropanol or ethyl acetate/methanol with the same buffer were studied as organic media. The mixture 50% MeOH-50% 20 mM sodium phosphate, pH 8, with 0.05% (v/v) Tween 20 resulted to be the best. A detection limit of 12.0 microg l(-1) and a dynamic range of 53.6-17,756.0 microg l(-1) were reached. The recycling of Protein A/G-based sensor working in this media was about 300 assays. Preconcentration factors around 250 were achieved using methanol as extracting solvent. It has been demonstrated that the technique can be successful in carrying out the analysis of low solubility in water analytes, such as 1-naphthol. The sensors developed can use higher concentrations of organic solvent (up to 50% methanol) compared to ELISA. On the other hand, the advantage of preconcentration can also be taken for the use of the same procedure as recommended for standard sample treatments.  相似文献   

5.
研究了毕赤酵母Pichia pastoris表达的重组人复合α干扰素(cIFN)时不同诱导甲醇浓度对cIFN分离纯化得率的影响,并分析了原因.在5L罐中采用0.25、0.50和0.75%(W/V)三个甲醇浓度诱导时,在0.75%高甲醇浓度诱导下cIFN表达水平最高,达到2.06 g/L,是0.25%低甲醇浓度诱导的1.24倍,但是低甲醇浓度诱导下cIFN分离纯化得率却高于高甲醇诱导浓度下3.75倍.另外,低甲醇浓度下发酵上清液cIFN抗病毒活性为2.85×108IU/mL,较高甲醇浓度提高了4.48倍.进一步采用SDS-PAGE和Native-PAGE免疫印迹分析不同条件下发酵液中cIFN存在状态,发现在高甲醇浓度下cIFN容易形成大量的聚合体,分别为共价聚合和非共价聚合,而cIFN单体含量较少,但是低甲醇浓度诱导下情况完全相反.最终在0.25%甲醇诱导下分离纯化1L发酵上清液可得0.73 g单体cIFN,是0.75%甲醇诱导下的3.84倍.  相似文献   

6.
Combining principles of membrane separation and semiconductor gas sensor technology, we constructed a methanol sensor to follow methanol concentrations on-line. A length of silicone tubing allowed for mass transfer of methanol from the fermentation medium to a carrier gas which then flowed over a semiconductor gas sensor for detection. The sterilizable sensor demonstrated excellent ability in following methanol concentrations during the batch production of a polysaccharide by the organism Methylomonas mucosa, even as the fermentation broth became increasingly viscous. During fed-batch control by feeding methanol to the fermentation to maintain setpoint methanol levels, a drift in the sensor signal was noted and quantified. A drift factor was determined which, after it was incorporated into the calibration calculations, improved methanol concentration control greatly. Methanol concentration was held constant over a range of set point concentrations during fedbatch fermentations.  相似文献   

7.
The methylotrophic yeast Pichia pastoris can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Accurate regulation of the methanol concentration in P. pastoris cultures is necessary to maintain induction, while preventing accumulation of methanol to cytotoxic levels. We developed an inexpensive methanol sensor that uses a gas-permeable silicone rubber tube immersed in the culture medium and an organic solvent vapor detector. The sensor was used to monitor methanol concentration continuously throughout a fed-batch shake-flask culture of a P. pastoris clone producing the N-lobe of human transferrin. The sensor calibration was stable for the duration of the culture and the output signal accurately reflected the methanol concentration determined off-line by HPLC. A closed-loop control system utilizing this sensor was developed and used to maintain a 0.3% (v/v) methanol concentration in the culture. Use of this system resulted in a fivefold increase in volumetric protein productivity over levels obtained using the conventional fed-batch protocol. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 279-286, 1997.  相似文献   

8.
Aluminium foil strips carrying varying numbers of spores of the Camp Detrick strain of Bacillus subtilis dried from water, 90% (v/v) methanol, 5 and 20% (v/v) serum, nutrient broth and isotonic saline were examined for their possible use as test pieces for the control of sterilization by ethylene oxide. Methanolic suspensions of these spores were found to be stable on storage, and foils carrying spores dried from methanol were the most reproducible and stable of those tested. The susceptibility of the test piece system could be controlled by varying the numbers of spores on each foil and the numbers of foils used per test.  相似文献   

9.
A single-chain antibody fragment directed against fimbriae of enterotoxigenic Escherichia coli was produced by recombinant Pichia pastoris under control of the methanol-inducible AOX1 promoter. In high-cell-density cultivation on defined medium, methanol-limited and methanol-saturated conditions were compared. After batch and fed-batch phase on glycerol, the methanol concentration was controlled to 1% (v/v) or methanol was fed with an exponentially increasing rate. Whereas methanol limitation impaired cell integrity and product quality, finally yielding no active product as a result of degradation, oxygen limitation was acceptable. To postpone the onset of limitation, the inlet air was enriched by pure oxygen. Because of faster methanol consumption, however, the process became sensitive to fluctuations in the feeding rate, and complete arrest of metabolism encountered upon small perturbations shortened the active production period. Without additional oxygen supply, the process was robust. Loss of culture integrity was monitored by flow cytometry and was found to precede changes in metabolic rates; it can thus serve as a sensitive indicator of forthcoming problems. Single-step downstream processing from the culture supernatant by His-affinity chromatography was efficient when antifoam agent that coagulates upon pH titration was omitted and yielded 1 g of purified lyophilized product from 6 L initial culture volume.  相似文献   

10.
We have studied methanol-induced conformational changes in rmethuG-CSF at pH 2.5 by means of circular dichroism (CD), fluorescence and infrared (IR) spectroscopy, and 8-anilino-1-naphthalene sulfonic acid (ANS) binding. Methanol has little effect on the secondary and tertiary structures of rmethuG-CSF when its concentration is in the range of 0 to 20% (v/v). At 30% (v/v) methanol, rmethuG-CSF has ANS binding ability. In the methanol concentration range of 30 to 70% (v/v) the amount of alpha-helix decreases a little, and the tertiary structure decreases significantly. At methanol concentrations above 70% (v/v), a transition to a more helical state occurs, while there is little change in the tertiary structure, and no ANS binding ability. Thermal denaturation studies involving CD have demonstrated that as the methanol concentration increases the melting temperature and the cooperativity of transition decrease, and the transition covers a much wider range of temperature. It seems that the decreased cooperativity means an increase in the concentration of partially folded intermediate states during the unfolding of rmethuG-CSF.  相似文献   

11.
Chemical permeabilization has been widely studied for the release useful metabolites from many types of plant cells and tissues. In this study, the effect of 0-30% (v/v) of aqueous methanol solutions were used to permeabilize soybeans for the release of two isoflavonoids: daidzein and genistein. The release of these metabolites increases with increasing methanol concentrations. The amounts of daidzein and genistein released can increase up to 40- and 86-fold, respectively, when incubated in a 30% (v/v) methanol solution for 24 h compared with those incubated with water only. The effect of methanol on the release rates is primarily due to an increase in solubility of the stored daidzein and genistein (14- to 18-fold) inside the seeds, thus maximizing the concentration gradients for metabolite release. However, the viability of the seeds dropped with increase in methanol concentrations and the incubation time. The viability of soybeans (indicated by their ability to germinate) after permeabilization treatment with 0-20% (v/v) methanol solutions was maintained above 80% throughout the 24 h, whereas no seeds were found to be viable when 30% (v/v) methanol solution was used. The permeability coefficients (P) of daidzein and genistein were found to increase as the methanol concentration used was increased. These P values were estimated to range from 1.1 x 10(-)(9) to 1.9 x 10(-)(8) m/s and 1.0 x 10(-)(9) to 1.7 x 10(-)(8) m/s, respectively. The increase in P can be attributed primarily to an increase in the partition coefficient of the metabolites in the soybean seedcoats. An empirical correlation is proposed in which the log P values are described as a function of the metabolite molecular weights and the partition coefficients of the metabolites between octanol and water, K(oct/water), which was modified to include the effect of methanol present. Knowledge obtained from this study will help provide useful selection criteria for chemical permeabilization of plant tissues, such as seeds, with minimal loss in their viability.  相似文献   

12.
Autotrophic cultures of the marine microalgae Chlorella minutissima were performed at 13 000 lux continuous illumination in 1 l chambers fertilised with 0.25 g l−1 F2 medium and different doses of methanol. This was administered in two ways during two parallel experimental series of 10 days: 0.05, 0.1, 0.5, 1.0 and 5.0% methanol (v/v) in one unique dose at the beginning of the culture and 1/10 of these (i.e. 0.005, 0.01, 0.05, 0.1 and 0.5% methanol (v/v)) in daily doses for the 10-day culture period. Low concentrations of methanol induced a faster increase of cell density and dry weight than control, while high concentrations induced symptoms of toxicity. The higher cell densities and quicker growth were observed in the experiments with daily administration of 0.005 and 0.1% (v/v) methanol, while those with one dose presented an initial boosted growth but a final cell density lower than control. The role of methanol as alternative carbon source for microalgae, as well as its possible impact on the quality of biomass production and on the environment, are discussed.  相似文献   

13.
A broader exploitation of enzymes in organic synthesis can be achieved by increasing their tolerance toward organic solvents. In this study, the stability and activity of Baeyer–Villiger monooxygenases from Thermobifida fusca (PAMO) and Acinetobacter sp. (CHMO) in the presence of water miscible organic solvents were compared. PAMO was more stable than CHMO. The concentration of solvent (v/v) at which it halved its activity (C50) was 4‐ to 16‐fold higher than that observed for CHMO. For PAMO, the C50 varied from 16% to 55% of solvent and followed the destabilizing order methanol < ethanol < 1,4‐dioxane < acetonitrile < trifluoroethanol. In the case of CHMO, the maximal C50 was 7% with methanol and even lower with the other solvents. Therefore, methanol was the most tolerated solvent. In the case of PAMO, methanol induced a significant increase of enzyme activity (up to fivefold), which was optimal at 20% (v/v) solvent. Only minor spectral variations were observed with PAMO in 20% methanol, suggesting that the increase of activity observed in this condition is not due to marked conformational changes. Fluorescence and circular dichroism analyses showed that the lower stability of CHMO toward organic solvent correlates with a more pronounced destructive effect on its secondary and tertiary structure. A possible rationale for the higher stability of PAMO could be inferred from inspection of the PAMO and CHMO (two enzymes of similar size) structure, which revealed a higher (up to twofold) number of ionic bridges in PAMO with respect to CHMO. Biotechnol. Bioeng. 2011; 108:491–499. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
T Hofmann  A L Fink  B M Dunn 《Biochemistry》1984,23(22):5247-5256
Intrinsic spectral and kinetic properties of penicillopepsin and its action on N-acetylalanylalanyllysyl-p-nitrophenylalanylalanylalanine amide have been investigated at subzero temperatures in aqueous methanol and dimethyl sulfoxide solutions in an attempt to find evidence for or against a covalent mechanism in the catalyzed hydrolysis of peptide bonds. The study of fluorescence and circular dichroism spectra as a function of solvent concentrations gave no evidence for any solvent-induced structural effects at temperatures below the thermal denaturation transition. The effect of temperature on the intrinsic fluorescence of penicillopepsin in either 60% (v/v) methanol or 50% (v/v) dimethyl sulfoxide did not indicate any temperature-induced structural changes. On the other hand, Arrhenius plots for the hydrolysis reaction over the range 0 to -50 degrees C showed downward curvature. A probable explanation for this phenomenon is that the reduction in flexibility of the enzyme due to thermal and viscosity factors leads to the stabilization of a nonproductive conformation. The pH optima of kcat/Km are shifted from 5.1 in aqueous solvents to 5.6 in 60% methanol and to 6.6 in 50% dimethyl sulfoxide. Aqueous methanol caused small decreases of Km and of Kcat; the decrease in the latter was greater than that brought about by the decrease in the water concentration. In aqueous dimethyl sulfoxide, there was no detectable change in kcat up to 15%, but Km increased by more than an order of magnitude. Above 15%, only kcat/Km could be measured. No evidence for the accumulation of either covalent amino or covalent acyl intermediates was obtained when penicillopepsin was incubated at -70 degrees C in 67% methanol with several substrates. Although negative, these experiments do not rule out conclusively the involvement of covalent intermediates in penicillopepsin-catalyzed reactions.  相似文献   

15.
Candida bombicola, a known producer of sophorolipids (SLs; glycolipid surfactants), was grown on glycerol and oleic acid with up to 1.5% (v/v) methanol in the fermentation growth media to assess the effects of methanol presence on SL synthesis and structural distribution. Increasing methanol concentrations had little effect on the growth of the organism resulting in average cell dry weights (CDW; after SL separation) of 20.8 ± 0.7 g/l between 0 and 1.5% methanol. However, increasing methanol concentrations decreased SL production by 56% (from 12.7 to 5.6 g/l at 1.5% methanol) which translated to SL yields on a cellular basis of between 0.60 g SL/g cells (in the absence of methanol) to 0.27 g SL/g cells (in the presence of 1.5% methanol). LC/MS revealed that increased methanol concentrations also resulted in larger concentrations (up to 20 mol%) of free acid SLs but had little effect on the ratios of diacetylated SL lactones synthesized with palmitic acid (4 mol%), linoleic acid (3 mol%), oleic acid (80 mol%), and stearic acid (13 mol%) as the hydrophobic moieties.  相似文献   

16.
For the purpose of a rational design for an automatic feedback control system incorporating a porous Teflon tubing sensor in semibatch culture, steady-state mass-transfer characteristics of tubing sensors have been investigated theoretically and experimentally, and also dynamic responses have been studied experimentally. A distributed mathematical model for steady-state diffusion has been solved numerically and its solution has been shown as useful for the sensor design. The overall mass-transfer resistance of radial diffusion has been shown to be the sum of external liquid-film mass-transfer resistance and membrane diffusion resistance. The steady-state experiments using ethanol dissolved in water revealed that its transfer into the tubing was controlled by the molecular diffusion within the tubing-wall membrane. Oxygen transfer from external water into the tubing was shown experimentally to be controlled by the liquid-film resistance outside the tubing. In general, the radial mass transfer of a substance having a small Henry's constant is controlled by the liquid-film resistance. The response of the tubing sensor-detector-recorder system for the stepwise addition of ethanol into the external water could not be represented by a simple combined system of the first-order delay with lag time. The responses depend on the characteristics of the tubing as well as flow rate of the carrier gas, etc., but they were quite excellent in all cases (e.g., 90% in 20 s).  相似文献   

17.
An automatic feedback control system incorporating a porous Teflon tubing sensor was developed and a strain of yeast was cultivated semibatchwise in mineral salt medium by feeding pure ethanol as the sole carbon source. In the control system, The ethanol concentration was continuously measured by the porous Teflon tubing sensor combined with a flame ionization detector, and its output signals were furnished to an automatic feed controller which controlled an ethanol feed pump so that deviations from the set level of ethanol concentration might be corrected. The controller was constructed on the basis of proportional-differential negative feedback control of which the proportional sensitivity and differentiation constants were estimated from the dynamic mass balance of ethanol. Precise measurement of temperature and compensation of the detector output signals for temperature fluctuations of culture broth were necessary to achieve good control. Cultivation experiments were carried out with three levels of concentrations: 102, 103, and 104 ppm. The relative deviations of the concentrations were less than ±0.5% for the 103- and 104- ppm levels but a little offset arose for the 102-ppm levels. The growth of cells was at first exponential and then almost linear when the dissolved oxygen concentration dropped considerably.  相似文献   

18.
The methylotrophic yeast Pichia pastoris is a powerful system for production of recombinant proteins, showing high ability to secrete properly folded proteins. A major plus is the strong AOX1 promoter highly induced by methanol. During growth on methanol, however, oxygen readily becomes limiting. In oxygen-limited cultivations of recombinant Pichia pastoris, the methanol concentration had a strong impact on the production of a single-chain antibody fragment (scFv). High methanol concentrations were required to compensate the lack of oxygen and fully induce recombinant protein production, at the same time reducing gratuitous biomass formation due to a lower biomass yield. Product concentrations of 60, 150, and 350 mg/L were obtained with methanol concentrations of 0.3, 1, and 3% (v/v). Moreover, accumulation of a putative product fragment that cannot be removed during affinity purification was prevented at high methanol concentrations. Cell vitality after 100 h was maintained above 98% and 96% of the culture with 0.3% and 3% methanol, respectively. In cultivations supplemented with oxygen, in contrast, methanol concentration between 0.3% and 3% did not influence the product yield of 300-400 mg/L. Thus, efficient recombinant protein production under oxygen-limitation seems to require high methanol concentrations, enabling product concentration as high as otherwise obtained only with expensive supply of pure oxygen.  相似文献   

19.
Studies exploring the effect of two nonaqueous solvents on enzyme activity were done using chloroperoxidase as a model system. Chloroperoxidase produced by Caldariomyces fumago is a bifunctional enzyme with halogenating activity at pH 3 and peroxidation activity at pH 5 to 6. Methanol affected both of these activities similarly. Furthermore, methanol and the halogen acceptor, monochlorodimedon, competitively inhibit the reaction. These results are discussed in terms of the site of action of methanol. At 10% methanol concentration, the enzyme retained up to 33% of its activity depending on the monochlorodimedon concentration. Dimethylsulfoxide at 10% concentration permitted up to 47% retention of activity. Its effects on the enzyme are more complex than methanol and are discussed in terms of a transitory inactivation of the enzyme.  相似文献   

20.
The marine microalga Chlorella sp. was cultivated under mixotrophic conditions using methanol as an organic carbon source, which may also act to maintain the sterility of the medium for long-term outdoor cultivation. The optimal methanol concentration was determined to be 1% (v/v) for both cell growth and lipid production when supplying 5% CO2 with 450 μE/m2/sec of continuous illumination. Under these conditions, the maximal cell biomass and total lipid production were 4.2 g dry wt/L and 17.5% (w/w), respectively, compared to 2.2 g dry wt/L and 12.5% (w/w) from autotrophic growth. Cell growth was inhibited at methanol concentrations above 1% (v/v) due to increased toxicity, whereas 1% methanol alone sustained 1.0 g dry wt/L and 4.8% total lipid production. We found that methanol was preferentially consumed during the initial period of cultivation, and carbon dioxide was consumed when the methanol was depleted. A 12:12 h (light:dark) cyclic illumination period produced favorable cell growth (3.6 g dry wt/L). Higher lipid production was observed with cyclic illumination than with continuous illumination (18.6% (w/w) vs 17.5% (w/w)), and better lipid production was also obtained under mixotrophic rather than autotrophic conditions. Interestingly, under mixotrophic conditions with 12:12 (h) cyclic illumination, high proportions of C16:0, C18:0, and C18:1 were observed, which are beneficial for biodiesel production. These results strongly indicate that the carbon source is important for controlling both lipid composition and cell growth under mixotrophic conditions, and they suggest that methanol could be utilized to scale up production to an open pond type system for outdoor cultivation where light illumination changes periodically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号