首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A regulation mechanism of the interaction of microsomal oxidases and mitochondrial respiratory chain with oxidase substrates is suggested. Quantitative comparison of their affinity to microsomal oxidases and mitochondrial NADH-dehydrogenase is carried out. The interaction with both systems is found to be hydrophobic. It is found that microsomal oxidase substrates inhibit mitochondrial NADH-dehydrogenase at concentrations, which should completely fill the active site of cytochrome P-450. It is suggested that redistribution of reduced equivalents from mitochondria to microsomes and the acceleration of xenobiotic detoxication take place.  相似文献   

2.
Purification of mitochondria and mitochondrial protein complexes from green tissues is often severely impaired by the presence of chloroplasts and their proteins. Here we present a method which allows analysis of respiratory protein complexes from potato leaves. The procedure includes the preparation of an organellar fraction specifically enriched in mitochondria and the separation of organellar protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). For the first time mitochondrial and chloroplast protein complexes have been resolved simultaneously in a native gel. BN-PAGE allowed the separation of eleven bands, including the mitochondrial NADH-dehydrogenase, the bc1 complex and the mitochondrial F1-ATP synthase as well as the chloroplast F1-ATP synthase, the cytochrome b6f complex, the two photosystems and the light harvesting complex. The resolution of the protein complexes in the first dimension was good enough to allow identification of all subunits of individual complexes in the second dimension under denaturing conditions. Thus, BN-PAGE offers an opportunity to analyze mitochondrial and chloroplast protein complexes from a single preparation from very small amounts of tissue. The implications of our findings, for studies on protein expression and turnover in different tissues and developmental stages, are discussed.  相似文献   

3.
Induction of apoptosis by DNA-damaging agents, such as etoposide, is known to involve the release of mitochondrial cytochrome c, although the mechanism responsible for this event is unclear. In the present study, using Jurkat T-lymphocytes, a reconstituted cell-free system, or isolated liver mitochondria, we demonstrate the ability of etoposide to induce cytochrome c release via two distinct pathways. Caspase inhibition by either benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk) or benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-fluoromethyl ketone (z-VDVAD-fmk) attenuates cytochrome c release triggered by a low dose of etoposide via an apparent inhibition of nuclear events involving the release of protein factor(s) that is (are) able to interact with mitochondria. In contrast, caspase inhibition has no effect on cytochrome c release induced by a higher dose of etoposide. Moreover, the higher dose of etoposide heightens the sensitivity of Ca(2+)-loaded isolated mitochondria to mitochondrial permeability transition, an effect that is completely abolished by cyclosporin A. Interestingly, cyclosporin A is ineffective at preventing similar mitochondrial damage in Jurkat cells treated with etoposide. We propose that lower doses of etoposide predominantly target the nucleus and stimulate the release of caspase-sensitive protein factor(s) that interact with mitochondria to trigger cytochrome c release, whereas higher doses of the drug impart a more direct effect on mitochondria and thus are not mitigated by caspase inhibition.  相似文献   

4.
1. Functional properties of the ATPase complex are investigated in megamitochondria isolated from livers of weanling mice fed a diet containing 2% chloramphenicol, as an inhibitor of mitochondrial protein synthesis. 2. Whereas the specific activity of ATPase remains unchanged in chloramphenicol-induced megamitochondria, about 40% of the enyzme activity is resistant to inhibition by oligomycin, triethyltin or venturicidin. It is concluded that the ATPase complex lacks one or more components whose synthesis or accumulation is dependent on mitochondrial translation. The inhibitor-resistant ATPase portion appears tightly bound to the mitochondrial membrane. 3. Respiratory chain phosphorylation is tightly coupled in isolated megamitochondria. ATP synthesis and ATP-Pi exchange are diminished by 40%, as compared to control mitochondria, but both processes are sensitive to oligomycin, triethyltin or venturicidin. 4. The decrease in ATP synthesis and ATP-Pi exchange in megamitochondria correlates quite well with the emergence of inhibitor-resistant ATPase. 5. The following electron transport activities in the megmitochondria are reduced: NADH-cytochrome c reductase, by 60%, cytochrome oxidase, by 80%; the amount of antimycin required to gain complete inhibition of the bc1-segment is diminished by more than 50%. On the other hand succinate dehydrogenase activity is increased by 50%. 6. Chloramphenicol-induced megamitochondria appear to be a useful system for studying the role of mitochondrial translation in the assembly of mammalian mitochondria.  相似文献   

5.
The protein(s) responsible for metabolite transport through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria depleted of mitochondrial porin (also known as voltage-dependent anion selective channel), termed here porin1, is (are) still unidentified. It is postulated that the transport may be supported by the protein import machinery of the outer membrane, the TOM complex (translocase of the outer membrane). We demonstrate here that in the absence of functional porin1, the blockage of the TOM complex by the fusion protein termed pb(2)-DHFR (consisting of the first 167 amino acids of yeast cytochrome b(2) preprotein connected to mouse dihydrofolate reductase) limits the access of external NADH to mitochondria. It was measured by the ability of the blockage to inhibit external NADH oxidation by the proper dehydrogenase located at the outer surface of the inner membrane. The inhibition depends on external NADH concentration and increases with decreasing amounts of the substrate. In the presence of 1 microg of pb(2)-DHFR per 50 microg of mitochondrial protein almost quantitative inhibition was observed when external NADH was applied at the concentration of 70 nmol per mg of mitochondrial protein. On the other hand, external NADH decreases the levels of pb(2)-DHFR binding at the trans site of the TOM complex in porin1-depleted mitochondria in a concentration-dependent fashion. Our data define an important role of the TOM complex in the transport of external NADH across the outer membrane of porin1-depleted mitochondria.  相似文献   

6.
Hepatic mitochondria isolated from rats 40 h after dosage with 1.1 ml/kg CCl4 are uncoupled and display structural damage. Mitochondrial function returns during hepatic recovery. Because the products of mitochondrial protein synthesis are essential to mitochondrial structure and function, the effects of CCl4 on the rate of mitochondrial protein synthesis, and on the products, was studied using mitochondria from CCl4-exposed rats during the early, maximum development and resolution stages of CCl4-induced mitochondrial damage. Rates of mitochondrial protein synthesis (incorporation of [35S]methionine) were elevated 300% over that of mitochondria from non-exposed rats 17 h after exposure; depressed by 50% at 40 h and above control at 113 h. When the radiolabeled products of incorporation were separated and examined by autoradiography, a novel, low-molecular-weight band, of approx. 9700, was apparent 40 h after CCl4 exposure. A band of similar molecular weight appeared when control mitochondria were incubated without an exogenous supply of ATP. Mitochondria from exposed rats which displayed rates of protein synthesis greater than control consistently had a relative increase in a band that corresponded in size to that of cytochrome oxidase subunit I. It was concluded that the loss of mitochondrial function induced by CCl4 could not be attributed to inhibition of mitochondrial protein synthesis, and that the mitochondria may not always synthesize protein in constant proportions.  相似文献   

7.
Summary The specific activities of the branched chain amino acyl-tRNA synthetases from the cytosolic and mitochondrial fractions ofN. crassa were low in dormant conidia and increased during germination, reaching a maximum 8 h after inoculation. This stage of development is characterised by high rates of many other cellular activities.The increases in activity of synthetases of both cytosol and mitochondria are inhibited by cycloheximide indicating that they are synthesized on cytoplasmic ribosomes. The mitochondrial synthetases show a stimulation of their specific activity when mitochondrial RNA and protein synthesis are inhibited by either ethidium bromide or chloramphenicol suggesting that a mitochondrial translation product regulates the synthesis of the mitochondrial synthetases.The activities of amino acyl-tRNA synthetases are dependent on energy production. When respiration is uncoupled from oxidative phosphorylation, synthetase specific activities decrease although the activities of other mitochondrial enzymes like NADH-dehydrogenase increase. This phenomenon suggests that more than one mechanism regulates the synthesis of mitochondrial proteins which are formed on cytoplasmic ribosomes.The synthesis of branched chain amino acyl-tRNA synthetases ofNeurospora is neither repressed by their cognate amino acids, nor is there inhibition by the precursors of these amino acids, as has been observed in other amino acyl-tRNA synthetases of various organism includingNeurospora.  相似文献   

8.
Effect of methotrexate (MTX) on mitochondrial oxygen uptake, oxidative phosphorylation and on the activity of several enzymes linked to respiratory chain was studied. MTX was able to inhibit state III respiration activated by ADP and to decrease the respiratory coefficient with the substrates alpha-ketoglutarate and glutamate; these effects became pronounced when mitochondria were pre-incubated with MTX for 10 min. No effect was observed on ATPase activity of undamaged or broken mitochondria; the same was true for NADH-oxidase, NADH-dehydrogenase, NADH-cytochrome c reductase, succinate oxidase, and cytochrome c oxidase activity. The effect on the steady-state of cytochrome b, as well as, the inhibitory effect on state III of respiration with NAD+-linked substrates, offers a reasonable possibility to suggesting that the inhibition site of MTX could be in a place anterior to cytochrome b region, and not linked to respiratory chain.  相似文献   

9.
L.De Jong  M. Holtrop  A.M. Kroon 《BBA》1978,501(3):405-414
Treatment of rats with thiamphenicol in a dose of 125 mg/kg per day for 60–64 h causes specific inhibition of mitochondrial protein synthesis, leading to a drastic decrease of the cytochrome c oxidase activity in intestinal epithelium. At the same time the mitochondrial ATPase activity becomes resistant to inhibition by oligomycin. Experiments with isolated intestinal mitochondria revealed that respiration in state 3 is diminished by 55% with succinate (5 mM) and by 40% with pyruvate (10 mM) plus L-malate (2 mM) as the substrates, both as compared to intestinal mitochondria isolated from control rats. P : O ratios as well as respiratory control indices are comparable in the two groups of animals. Uncoupled respiration is inhibited by 35% with succinate as the substrate, while the succinate cytochrome c reductase activity remains unaltered. No inhibition of uncoupled respiration with pyruvate plus L-malate as the substrates was observed. The ATP-Pi exchange activity in the mitochondria from the treated animals is diminished by about 75%. It is concluded that in the mitochondria of the treated animals the inhibition of the coupled respiration (state 3) is caused by the limitation of the ATP-generating capacity and that electron transport is rate limiting only with the rapidly oxidized substrates such as succinate, if respiration is uncoupled.  相似文献   

10.
Specific inhibition of mitochondrial protein synthesis reduces the oxidation rate of NADH-linked substrates in rat liver as well as in Neurospora crassa mitochondria. The present study shows that this is due to the fact that inhibition of mitochondrial protein synthesis leads to a decrease of the concentration of active complex I. Therefore, these results demonstrate that at least one of the genes for the subunits of complex I is localized on mitochondrial DNA.  相似文献   

11.
Antibodies against cytochromes b and c1 of bovine heart mitochondria and the photosynthetic bacterium, Rhodopseudomonas sphaeroides R-26, were raised in rabbits. The purified antibodies showed high titers against their respective antigens in enzyme-linked immunosorbent assays. Less than 15% cross-reactivity between the mitochondrial and bacterial cytochromes was detected. Although antibodies against mitochondrial cytochrome b did not inhibit the mitochondrial cytochrome b-c1 complex, a 70% inhibition was obtained when these antibodies were incubated with delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids indicating that the catalytic site(s) of mitochondrial cytochrome b are masked by phospholipids. On the other hand, antibodies against bacterial cytochrome b showed significant inhibition of the intact bacterial cytochrome b-c1 complex, indicating that some of the catalytic site epitopes of bacterial cytochrome b are exposed to the hydrophilic environment. Similar to antibodies against mitochondrial cytochrome b, antibodies against bacterial cytochrome b inhibited 50% activity of the mitochondrial cytochrome b-c1 complex only when they were incubated with the delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids, indicating that the common epitopes between the cytochromes b are masked by phospholipids. Antibodies against mitochondrial and bacterial cytochromes c1 completely inhibited their respective cytochrome b-c1 complexes but no cross-immunoinhibition was observed. However, when antibodies against bacterial cytochrome c1 were incubated with the delipidated mitochondrial cytochrome b-c1 complex before reconstitution with phospholipids, a 65% inhibition was observed, indicating that the common epitopes between the cytochromes c1 were also somewhat masked by phospholipids. Antibodies against mitochondrial cytochrome c1 inhibited 70% of the succinate oxidase activity in the intact mitochondria preparation, but no inhibition was observed in submitochondrial particles, indicating that some mitochondrial cytochrome c1 epitopes are exposed to the cytoplasmic side.  相似文献   

12.
Changes in the mitochondria of aerobically grown Saccharomyces cerevisiae cells upon deaeration and subsequent aeration of the medium were studied.

1. It is shown that removal of oxygen at the end of the exponential phase of growth (after completion of mitochondria formation) causes a decrease in activity of the respiratory enzymes. The activity of the complete respiratory system decreases much more rapidly than the activities of its fragments (NADH: ferricyanide reductase, succinate:ferricyanide reductase, NADH:cytochrome c reductase, succinate:cytochrome c reductase and cytochrome oxidase). The activities are restored to their initial level upon aeration of the cell suspension. The addition of Tween-80 and ergosterol to the medium prior to deaeration does not prevent inactivation of the respiratory system.

All the changes in mitochondria described occurred under conditions where cell division was insignificant.

2. Deaeration of the medium decreases the content of cytochromes b and aa3 in the mitochondrial fraction, cytochrome aa3 “disappearing” more quickly. The concentration of cytochromes in this fraction increases upon subsequent aeration of the cells. The total cytochromal content of the cells remains practically unchanged under the same conditions.

3. According to electron microscopic data, anaerobiosis causes a certain disorganization of mitochondrial cristal membranes. The mitochondrial structures are recovered upon aeration of the yeast cell suspension. It may be reasoned that inactivation and reactivation of the respiratory system are associated with reversible changes in mitochondrial membrane structure.

4. The effect of protein synthesis inhibitors on the restoration of mitochondria was investigated. It is shown that chloramphenicol does not suppress this process. In the presence of cycloheximide, oxygen induces reactivation of the respiratory system and simultaneously the appearance of particles resembling mitochondria. However, these particles gradually undergo morphological changes and the respiratory activity of the mitochondrial fraction decreases. Cycloheximide added to yeast cells that had not been deaerated, did not affect their mitochondria.

5. The results described suggest that the functions of oxygen in the formation of mitochondria are not restricted to the induction of mitochondrial protein synthesis and to the participation in the synthesis of certain non protein membrane components. Evidently, oxygen has a direct effect on the assembly of the respiratory system and mitochondrial membranes as a whole.  相似文献   


13.
We made use of a homologous cell-free mitochondrial protein import system derived from the yeast Saccharomyces cerevisiae to investigate the coupling of protein synthesis and import. Mitochondrial precursor proteins were synthesized in a yeast lysate either in the presence or absence of isolated yeast mitochondria. We were, therefore, able to analyze protein import into mitochondria either in a strictly posttranslational reaction (when isolated mitochondria were added only after protein synthesis has been arrested by the addition of cycloheximide) or in a reaction in which synthesis and import were permitted to occur simultaneously. We found that the import of a precursor protein consisting of the amino-terminal mitochondrial targeting sequence of cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase is very inefficient in a strictly posttranslational reaction, whereas efficient import is observed if precursor synthesis and import are coupled. The same result was obtained when we analyzed the import of bulk endogenous yeast mitochondrial proteins in this system. Finally, we found that the insertion of the yeast outer membrane protein porin is also several times more efficient when synthesis and insertion are coupled.  相似文献   

14.
The action of nitrogenous basis--electroneutral hydrazides (pK less than 7,50 and positive charged arylhydrazones (pK greater than 8)--on the respiratory chain enzymes and the influence of the electric charge and the size of alkoxylic group on biological activity compounds have been investigated. It has been shown that the size of alkoxylic group defines the selective action of nitrogenous basis on the enzymes of mitochondrial respiratory chain. The nitrogenous basis with a long alkoxylic group is shown to be inhibitors of NADH-dehydrogenase, their action is similar to rotenone. At the same time compounds with a short group are more effective in the inhibition of the enzymes of the initial segment in the respiratory chain mitochondria. The affinity of the organic cations of arylhydrazones to NADH-dehydrogenase is 100-1000 times higher than the affinity of electric neutral compounds.  相似文献   

15.
A strain of yeast lacking the gene for the Rieske iron-sulfur protein (RIP) of the cytochrome b-c1 complex was used to study the assembly of this complex in the mitochondrial membrane. This strain lacks the mRNA for the iron-sulfur protein as evidenced by both Northern hybridization using a probe containing the coding region of the gene plus in vitro translation of total RNA followed by immunoprecipitation with a specific antibody against the iron-sulfur protein. In addition, isolated mitochondria from this strain lacked cytochrome c reductase activity with either succinate or the decyl analog of ubiquinol as substrate. Immunoblotting studies with antiserum against the cytochrome b-c1 complex revealed that mitochondria from the iron-sulfur protein-deficient strain have levels of core protein I, core protein II, and cytochrome c1 equal to those of wild-type mitochondria; however, a decrease in cytochrome b was evident from both immunoblotting and spectral analysis. Moreover, it is evident from the immunoprecipitates of radiolabeled mitochondria that the amounts of the low-molecular-weight subunits (17, 14, and 11 kDa) are decreased 53, 65, and 50%, respectively, in mitochondria lacking the iron-sulfur protein. These results suggest that the iron-sulfur protein is required for the complete assembly of the low-molecular-weight subunits into the cytochrome b-c1 complex.  相似文献   

16.
The effect of cytochrome b on the assembly of the subunits of complex III into the inner mitochondrial membrane has been studied in four mutants of yeast that lack a spectrally detectable cytochrome b and do not synthesize apocytochrome b. Quantitative analysis of intact mitochondria by immunoprecipitation or immunoblotting techniques with specific antisera revealed that the core proteins and the iron-sulfur protein were decreased 50% or more in the mitochondria from the mutants as compared to the wild type. Sonication of wild-type mitochondria did not result in any decrease in any of these proteins from the membrane; however, sonication of mitochondria from the four mutants resulted in a further decrease in the amount of these proteins suggesting that they are not as tightly bound to the mitochondrial membrane in the absence of cytochrome b. By contrast, the amounts of cytochrome c1 in the mitochondria, as determined both spectroscopically and immunologically, were not significantly affected by the absence of cytochrome b. In addition, no loss of cytochrome c1 was observed after sonication of the mitochondria suggesting that this protein is tightly bound to the membrane. These results suggest that the processing and/or assembly of these subunits of complex III into the mitochondrial membrane is affected by the absence of cytochrome b.  相似文献   

17.
The purpose of this study was to investigate the contribution of mitochondrial and cytoplasmic protein synthesis to the biogenesis of cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase EC 1.9.3.1) and rutamycin-sensitive adenosine triphosphatase (ATP phosphohydrolase EC 3.6.1.3) in cultured oocytes of the toad, Xenopus laevis. X. laevis cytochrome oxidase was purified over 23-fold with respect to specific activity and over 29-fold with respect to specific heme a content from oocyte submitochondrial particles. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate separated the enzyme into six subunits with molecular weights of 44,000, 33,000, 23,000, 17,000, 12,000 and 9,500. the synthesis of the three larger subunits is sensitive to chloramphenicol (an inhibitor of mitochondrial protein synthesis), indicating that these subunits are made on mitochondrial ribosomes; the synthesis of the three smaller subunits is sensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and therefore occurs on cytoplasmic ribosomes. X. laevis rutamycin-sensitive ATPase, purified over 19-fold from oocyte submitochondrial pparticles, consists of 10 subunits with molecular weights of 56,000, 53,000, 41,000, 32,000, 29,000, 24,000, 21,000, 17,500 (2), and 11,500 on sodium dodecyl sulfate-polyacrylamide gels. The 29,000, 21,000, and one of the 17,500-dalton polypeptides are synthesized in the presence of cycloheximide and are, therefore, products of mitochondrial protein synthesis; the synthesis of the remaining seven subunits occurs in the presence of chloramphenicol, indicating that these subunits are made on cytoplasmic ribosomes. The synthesis of protein by mitochondria in cultured oocytes appears to be dependent upon cytoplasmic protein synthesis. In the presence of cycloheximide, the mitoribosomal synthesis of the subunits of cytochrome oxidase and rutamycin-sensitive ATPase is detectable only after a prior inhibition of mitochondrial protein synthesis by chloramphenicol. Oocyte mitochondrial ribosomes synthesize at least nine polypeptides after chloramphenicol treatment, three of which are components of neither cytochrome oxidase nor rutamycin-sensitive ATPase.  相似文献   

18.
Under standard conditions, liver regeneration is impaired if mitochondrial protein synthesis is completely blocked. By treating rats with oxytetracycline for various periods of time directly prior to partial hepatectomy, livers were led to a condition of relative deficiency in cytochrome c oxidase and ATP synthetase. To this end, oxytetracycline was administered by means of continuous intravenous infusion up to concentrations of 20 micrograms/ml serum, giving a gradual decrease in cytochrome c oxidase activity. This activity was used as a marker for functionally capable mitochondria and as a tool to monitor the efficiency of inhibition of mitochondrial protein synthesis. It is shown that liver regeneration is strongly impaired after a period of pretreatment of 22 days or more and continuation of oxytetracycline treatment during regeneration. The mitochondrial respiratory capacity is reduced to 14% of the control value under these conditions. To obtain inhibitory levels within the regenerating liver, it was necessary to raise the serum levels slightly above 20 micrograms/ml. This measure is most likely required because of the poor vascularization of the regenerating liver. The serum levels were kept, however, far below those known to inhibit cytoplasmic protein synthesis. The results show that in normal liver the respiratory capacity must be reduced drastically before energy-requiring processes become affected. In Zajdela hepatoma cells, similar effects are found after reduction of the cytochrome c oxidase activity to 38%. This difference in sensitivity is probably based on the different mitochondrial content of liver cells and the liver-derived Zajdela cells.  相似文献   

19.
TFAR19促进小鼠肝线粒体膜通透性转运孔的开放   总被引:12,自引:0,他引:12  
TFAR19基因 (TF 1cellapoptosisrelatedgene 19)是北京大学人类疾病基因中心从人白血病细胞株TF 1细胞中克隆到的凋亡相关新基因之一 (GenBank登记号AF0 1495 5 )。初步研究发现 ,该基因在细胞凋亡时高表达 ,并且表达产物具有抑制肿瘤细胞生长和促进凋亡作用。但是其确切的作用机制不明。线粒体膜完整性破坏所导致促凋亡因子 (如细胞色素c等因子 )的释放是细胞凋亡关键性的控制因素。线粒体膜通透性转运孔 (PTP) ,对线粒体膜完整性具有重要的调控作用。研究了重组人TFAR19蛋白在体外条件下 ,对线粒体PTP、跨膜电位 ,以及细胞色素c释放的影响。结果表明 ,TFAR19蛋白使分离的小鼠肝线粒体PTP开放、线粒体跨膜电位下降 ,以及细胞色素c释放。TFAR19对线粒体的上述作用是通过促进PTP开放起作用的。实验结果提示 ,TFAR19对线粒体凋亡信号有正反馈放大作用 ,并进一步揭示了TFAR19促进细胞凋亡的机制  相似文献   

20.
The proteasome is a multiprotein complex that is involved in the intracellular protein degradation in eukaryotes. Here, we show that human malignant glioma cells are susceptible to apoptotic cell death induced by the proteasome inhibitors, MG132 and lactacystin. The execution of the apoptotic death program involves the processing of caspases 2, 3, 7, 8, and 9. Apoptosis is inhibited by ectopic expression of X-linked inhibitor of apoptosis (XIAP) and by coexposure to the broad-spectrum caspase inhibitor, benzoyl-VAD-fluoromethyl ketone (zVAD-fmk), but not by the preferential caspase 8 inhibitor, crm-A. It is interesting that specific morphological alterations induced by proteasome inhibition, such as dilated rough endoplasmic reticulum and the formation of cytoplasmic vacuoles and dense mitochondrial deposits, are unaffected by zVAD-fmk. Apoptosis is also inhibited by ectopic expression of Bcl-2 or by an inhibitor of protein synthesis, cycloheximide. Further, cytochrome c release and disruption of mitochondrial membrane potential are prominent features of apoptosis triggered by proteasome inhibition. Bcl-2 is a stronger inhibitor of cytochrome c release than zVAD-fmk. XIAP and crm-A fail to modulate cytochrome c release. These data place cytochrome c release downstream of Bcl-2 activity but upstream of XIAP- and crm-A-sensitive caspases. The partial inhibition of cytochrome c release by zVAD-fmk indicates a positive feedback loop that may involve cytochrome c release and zVAD-fmk-sensitive caspases. Finally, death ligand/receptor interactions, including the CD95/CD95 ligand system, do not mediate apoptosis induced by proteasome inhibition in human malignant glioma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号