首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The availability of molecular tools to carry out genotyping has led to a flurry of association studies between specific genes and clinical indices of disease or disease susceptibility. Human studies, for the most part, have a limited number of subjects available, precluding whole genome types of approaches. 'Candidate gene' strategies have consequently become widespread, probably in part due to the inherent similarity to clinical association studies. Such studies in cystic fibrosis have found tantalizing results in genes involved in infection and inflammation, but many other relevant pathways remain untapped. Genome scanning approaches may eventually uncover genes not currently recognized as important to cystic fibrosis. In the meantime, while thousands of polymorphisms are cataloged and other genomic resources become more available, the number of association studies with candidate genes will no doubt increase. To make sense of these studies, the choice of gene and phenotype must be carefully considered.  相似文献   

2.

Background  

Rates of molecular evolution in different lineages can vary widely, and some of this variation might be predictable from aspects of species' biology. Investigating such predictable rate variation can help us to understand the causes of molecular evolution, and could also help to improve molecular dating methods. Here we present a comprehensive study of the life history correlates of substitution rate variation across the mammals, comparing results for mitochondrial and nuclear loci, and for synonymous and non-synonymous sites. We use phylogenetic comparative methods, refined to take into account the special nature of substitution rate data. Particular attention is paid to the widespread correlations between the components of mammalian life history, which can complicate the interpretation of results.  相似文献   

3.

Background

Tandem repeat variation in protein-coding regions will alter protein length and may introduce frameshifts. Tandem repeat variants are associated with variation in pathogenicity in bacteria and with human disease. We characterized tandem repeat polymorphism in human proteins, using the UniGene database, and tested whether these were associated with host defense roles.

Results

Protein-coding tandem repeat copy-number polymorphisms were detected in 249 tandem repeats found in 218 UniGene clusters; observed length differences ranged from 2 to 144 nucleotides, with unit copy lengths ranging from 2 to 57. This corresponded to 1.59% (218/13,749) of proteins investigated carrying detectable polymorphisms in the copy-number of protein-coding tandem repeats. We found no evidence that tandem repeat copy-number polymorphism was significantly elevated in defense-response proteins (p = 0.882). An association with the Gene Ontology term 'protein-binding' remained significant after covariate adjustment and correction for multiple testing. Combining this analysis with previous experimental evaluations of tandem repeat polymorphism, we estimate the approximate mean frequency of tandem repeat polymorphisms in human proteins to be 6%. Because 13.9% of the polymorphisms were not a multiple of three nucleotides, up to 1% of proteins may contain frameshifting tandem repeat polymorphisms.

Conclusion

Around 1 in 20 human proteins are likely to contain tandem repeat copy-number polymorphisms within coding regions. Such polymorphisms are not more frequent among defense-response proteins; their prevalence among protein-binding proteins may reflect lower selective constraints on their structural modification. The impact of frameshifting and longer copy-number variants on protein function and disease merits further investigation.  相似文献   

4.

Background  

Tandem repeat variation in protein-coding regions will alter protein length and may introduce frameshifts. Tandem repeat variants are associated with variation in pathogenicity in bacteria and with human disease. We characterized tandem repeat polymorphism in human proteins, using the UniGene database, and tested whether these were associated with host defense roles.  相似文献   

5.
6.
Interaction (nonadditive effects) between genetic variants has been highlighted as an important mechanism underlying phenotypic variation, but the discovery of genetic interactions in humans has proved difficult. In this study, we show that the spectrum of variation in the human genome has been shaped by modifier effects of cis-regulatory variation on the functional impact of putatively deleterious protein-coding variants. We analyzed 1000 Genomes population-scale resequencing data from Europe (CEU [Utah residents with Northern and Western European ancestry from the CEPH collection]) and Africa (YRI [Yoruba in Ibadan, Nigeria]) together with gene expression data from arrays and RNA sequencing for the same samples. We observed an underrepresentation of derived putatively functional coding variation on the more highly expressed regulatory haplotype, which suggests stronger purifying selection against deleterious coding variants that have increased penetrance because of their regulatory background. Furthermore, the frequency spectrum and impact size distribution of common regulatory polymorphisms (eQTLs) appear to be shaped in order to minimize the selective disadvantage of having deleterious coding mutations on the more highly expressed haplotype. Interestingly, eQTLs explaining common disease GWAS signals showed an enrichment of putative epistatic effects, suggesting that some disease associations might arise from interactions increasing the penetrance of rare coding variants. In conclusion, our results indicate that regulatory and coding variants often modify the functional impact of each other. This specific type of genetic interaction is detectable from sequencing data in a genome-wide manner, and characterizing these joint effects might help us understand functional mechanisms behind genetic associations to human phenotypes-including both Mendelian and common disease.  相似文献   

7.
8.
9.
10.
Populations of Cepaea nemoralis in Warwickshire occupy habitats of considerable temporal stability, most being at least 250 years old, and some much older. As expected from earlier work, shell pattern polymorphisms in these populations show variation with habitat of a kind suggesting the operation of visual selection for crypsis. They also show patterns of microgeographical variation unrelated to habitat. Although of a less extreme character, this variation resembles the 'area effects' seen in downland populations of Cepaea , in the lack of coincidence of variation at different loci, and in the existence of stronger and larger scale patterns in banding than in colour morphs. A similar explanation is advanced for their occurrence: previous bottlenecks and colonization from small relicts with founder effects. The less marked character of the variation is expected from the greater habitat stability and continuity in Warwickshire compared with downland. A clear colonization effect is seen in the inverse relationship between age of habitat and frequency of yellow in woodland populations. The results suggest that population histories affect variation in Cepaea even in areas of relative habitat stability.  相似文献   

11.
12.
13.
Summary  In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unsually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.  相似文献   

14.
An extensive analysis of genomic DNA preparations from a number of normal and malignant tissues revealed BglII site polymorphism of the human p53 gene. Approximately 10% of p53 gene alleles were found to contain an additional BglII site localized in a region of intron I. This allelic form of p53 gene was also responsible for p53 protein having altered electrophoretic mobility. Molecular cloning and sequencing of both the alleles of p53 gene revealed a base-pair change in codon 72 causing arginine → proline substitution in the allele with the additional BglII site. Both variants of the p53 gene may occur in homozygous state and are therefore functional.  相似文献   

15.
Phase variation of regulatory elements in maize   总被引:4,自引:3,他引:1       下载免费PDF全文
Peterson PA 《Genetics》1966,54(1):249-266
  相似文献   

16.
Comparison of open-reading frames (ORFs) H. pylori 26695 and J99 strains has been revealed prevalence of nucleotide replacements as transitions (more than 3%) above transversions (less than 1%). Prevalence of nucleotide transitions is caused by high speed of C : G to T : A transitions in a coding strand of DNA (3.5-5.3%) and not coding strand (2.9-3.9%). The correspondence rate of transversion (A --> C, A --> T, C --> A, C --> G, G --> C, G --> T, T --> A and T --> G) did not exceed 0.84%. The highest correspondence frequency between C and T was detected in ACGT-ATGT (28.3%) - the site of methylation by active methyltransferase M.Hpy99XI in H. pylori 26695 and J99. Thus one can speculate that predominant transition taking place in H. pylori is mutation of C into T, which is realized through cytosine methylation-deamination mechanism.  相似文献   

17.
A total of 790 Drosophila melanogaster genes that are alternatively spliced in a coding region and have orthologs in Drosophila pseudoobscura were studied. It proved that nucleotide substitutions are accumulated in alternative coding regions more rapidly than in constitutive coding regions. Moreover, the evolutionary patterns of alternative regions differing in insertion-deletion mechanisms (use of alternative promoters, splicing sites, or polyadenylation sites) differ significantly. The synonymous substitution rate in coding regions of genes varies more strongly than the nonsynonymous substitution rate. The patterns of substitutions in different classes of alternative regions of Drosophila melanogaster and mammals differ considerably.  相似文献   

18.
类泛素修饰蛋白质ISG15及其修饰酶系的功能   总被引:1,自引:0,他引:1  
受干扰素诱导表达的干扰素刺激基因15编码蛋白质(ISG15)是第1个被鉴定的类泛素修饰蛋白质.目前已在病毒感染细胞和肿瘤细胞中发现了多种ISG15的作用靶蛋白,提示ISG15可能在免疫调节和肿瘤发生等方面发挥重要作用.本文介绍ISG15的结构与生化特点,探讨ISG15在相关酶系作用下修饰目标蛋白质的机制,总结ISG15及其修饰酶系的抗病毒和抗肿瘤作用及其相关机制.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号