首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Iron(II)-dithiocarbamate complexes are used to trap nitrogen monoxide in biological samples, and the resulting nitrosyliron(II)-dithiocarbamate is detected and quantified by ESR. As the chemical properties of these compounds have been little studied, we investigated whether iron dithiocarbamate complexes can redox cycle. The electrode potentials of iron complexes of N-(dithiocarboxy)sarcosine (dtcs) and N-methyl-d-glucamine dithiocarbamate (mgd) are 56 and -25 mV at pH 7.4, respectively, as measured by cyclic voltammetry. The autoxidation and Fenton reaction of iron(II)-dtcs and iron(II)-mgd were studied by stopped-flow spectrophotometry with both iron(II) complexes and dioxygen or hydrogen peroxide in excess. In the case of excess iron(II)-dtcs and -mgd complexes, the rate constants of the autoxidation and the Fenton reaction are (1.6-3.2) x 10(4) and (0.7-1.1) x 10(5) M(-1) s(-1), respectively. In the presence of nitrogen monoxide, the oxidation of iron(II)-dtcs and iron(II)-mgd by hydrogen peroxide is significantly slower (ca. 10-15 M(-1) s(-1)). The physiological reductants ascorbate, cysteine, and glutathione efficiently reduce iron(III)-dtcs and iron(III)-mgd. Therefore, iron bound to dtcs and mgd can redox cycle between iron(II) and iron(III). The ligands dtcs and mgd are slowly oxidized by hydrogen peroxide with rate constants of 5.0 and 3.8 M(-1) s(-1), respectively.  相似文献   

2.
We early show that glutamate (Glu) mediate hyperoxia-induced newborn rat lung injury through N-methyl-d-aspartate receptor (NMDAR). In this study, we search for evidence of NMDAR expression on newborn rat alveolar macrophages (AMs) and the difference between newborn and adult rat AMs, and the possible effect on nitric oxide (NO) production of AMs by exogenous NMDA. The protein of NMDAR was showed by immunocytochemistry, and the mRNA was examined by RT-PCR and real-time PCR. The results show that: (i) both newborn and adult rat AMs express NMDAR1 and the four NMDAR2 subtypes and newborn rat AMs are higher expression. (ii) NMDA administration increase NO production, inducible nitric oxide synthase (iNOS) activity and iNOS mRNA expression of AMs. (iii) NMDAR activation elevates NO secretion of AMs, which suggests that AM may be one of the key cellular origin of the elevated NO secretion in hyperoxia-induced lung injury.  相似文献   

3.
Genome sequencing has recently shown the presence of genes coding for NO-synthase (NOS)-like proteins in bacteria. The roles of these proteins remain unclear. The interactions of a series of l-arginine (l-arg) analogs and iron ligands with two recombinant NOS-like proteins from Staphylococcus aureus (saNOS) and Bacillus anthracis (baNOS) have been studied by UV–visible spectroscopy. SaNOS and baNOS in their ferric native state, as well as their complexes with l-arg analogs and with various ligands, exhibit spectral characteristics highly similar to the corresponding complexes of heme-thiolate proteins such as cytochromes P450 and NOSs. However, saNOS greatly differs from baNOS at the level of three main properties: (i) native saNOS mainly exists under an hexacoordinated low-spin ferric state whereas native baNOS is mainly high-spin, (ii) the addition of tetrahydrobiopterin (H4B) or H4B analogs leads to an increase of the affinity of l-arg for saNOS but not for baNOS, and (iii) saNOS FeII, contrary to baNOS, binds relatively bulky ligands such as nitrosoalkanes and tert-butylisocyanide. Thus, saNOS exhibits properties very similar to those of the oxygenase domain of inducible NOS (iNOSoxy) not containing H4B, as expected for a NOSoxy-like protein that does not contain H4B. By contrast, the properties of baNOS which look like those of H4B-containing iNOSoxy are unexpected for a NOS-like protein not containing H4B. The origin of these surprising properties of baNOS remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号