首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of an important set of 3-furfurylxanthine derivatives is described. Binding affinities were determined for rat A1 and human A2A, A2B and A3 receptors. Several of the 3-furfuryl-7-methylxanthine derivatives showed moderate-to-high affinity at human A2B receptors, the most active compound (10d) having a Ki of 7.4 nM for hA2B receptors, with selectivities over rA1 and hA2A receptors up to 14-fold and 11-fold, respectively. Affinities for hA3 receptors were very low for all members of the set.  相似文献   

2.
Abstract

The novel hexadeoxyribonucleotides α-d(CpCpTpTpCpC) and α-d(CpApTpGpCpG), in which each glycosidic linkage exhibit the anomeric α-configuration, were synthesized by the phosphotriester method. 1H-NMR and thermal denaturation studies provided evidence for these a-oligonucleotides to exhibit a secondary structure similar to that of the natural nucleic acids.  相似文献   

3.
A series of tricyclic penciclovir (PCV) and hydroxybutylguanine (HBG) derivatives have been prepared with enhanced lipophilicity following an efficient synthetic route. All the novel tricyclic derivatives were evaluated for inhibitory activity against herpes simplex virus 1 and 2 (HSV-1, HSV-2) and thymidine kinase deficient (ACV resistant) HSV-1. The tricyclic HBG derivatives were devoid of inhibitory activity however several of the tricyclic PCV derivatives showed promising antiviral activity, in particular 9g (R?=?4-MeO-C6H4) displayed good inhibitory activity (HSV-1 EC50 1.5?μM, HSV-2 EC50 0.8?μM) and retained inhibitory activity in HSV-1 TK? cells (EC50 0.8?μM). Computational docking experiments supported the biological data observed and this preliminary study provides useful data for further development of tricyclic acyclic nucleoside derivatives with improved lipophilicity and retention of activity in HSV-1 TK deficient strains. Also, the new tricyclic derivatives were evaluated against a broad range of other DNA and RNA viruses, but were found to be inactive at subtoxic concentrations. In addition, weak to moderate cytostatic effect was observed for the new compounds.  相似文献   

4.
The oxoeicosanoid receptor 1 (OXER1) is a member of the G-protein coupled receptors (GPCR) family, and is involved in inflammatory processes and oncogenesis. As such it is an attractive target for pharmacological intervention. The present study aimed to shed light on the molecular fundaments of OXER1 modulation using chemical probes structurally related to the natural agonist 5-oxo-ETE. In a first step, 5-oxo-ETE and its closely related derivatives (5-oxo-EPE and 4-oxo-DHA) were obtained by conducting concise and high-yielding syntheses. The biological activity of obtained compounds was assessed in terms of potency (EC50) and efficacy (Emax) for arrestin recruitment. Finally, molecular modelling and simulation were used to explore binding characteristics of 5-oxo-ETE and derivatives with the aim to rationalize biological activity. Our data suggest that the tested 5-oxo-ETE derivatives (i) insert quickly into the membrane, (ii) access the receptor via transmembrane helices (TMs) 5 and 6 from the membrane side and (iii) drive potency and efficacy by differential interaction with TM5 and 7. Most importantly, we found that the methyl ester of 5-oxo-ETE (1a) showed even a higher maximum response than the natural agonist (1). In contrast, shifting the 5-oxo group into position 4 results in inactive compounds (4-oxo DHA compounds (3) and (3a)). All in all, our study provides relevant structural data that help understanding better OXER1 functionality and its modulation. The structural information presented herein will be useful for designing new lead compounds with desired signalling profiles.  相似文献   

5.
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.  相似文献   

6.
Mast cell degranulation triggers hypersensitivity reactions at the body–environment interface. Adenosine modulates degranulation, but enhancement and inhibition have both been reported. Which of four adenosine receptors (ARs) mediate modulation, and how, remains uncertain. Also uncertain is whether adenosine reaches mast cell ARs by autocrine ATP release and ecto-enzymatic conversion. Uncertainties partly reflect species and cell heterogeneity, circumvented here by focusing on homogeneous human LAD2 cells. Quantitative PCR detected expression of A2A, A2B, and A3, but not A1, ARs. Nonselective activation of ARs with increasing NECA monotonically enhanced immunologically or C3a-stimulated degranulation. NECA alone stimulated degranulation slightly. Selective AR antagonists did not affect C3a-stimulated degranulation. NECA''s enhancement of C3a-triggered degranulation was partially inhibited by separate application of each selective antagonist, and abolished by simultaneous addition of antagonists to the three ARs. Only the A2A antagonist separately inhibited NECA''s enhancement of immunologically stimulated degranulation, which was abolished by simultaneous addition of the three selective antagonists. Immunological or C3a activation did not stimulate ATP release. NECA also enhanced immunologically triggered degranulation of mouse bone marrow derived mast cells (BMMCs), which was partially reduced only by simultaneous addition of the three antagonists or by the nonselective antagonist CGS15943. BMMCs also expressed A2A, A2B, and A3 ARs. but not A1AR detectably. We conclude that (a) A1AR is unnecessary for LAD2 degranulation or AR enhancement; (b) A2A, A2B, and A3 ARs all contribute to pharmacologic AR enhancement of LAD2 and BMMC degranulation; and (c) LAD2 cells depend on microenvironmental adenosine to trigger AR modulation.  相似文献   

7.
Angiogenesis is critical to wound repair due to its role in providing oxygen and nutrients that are required to support the growth and function of reparative cells in damaged tissues. Adenosine receptors are claimed to be of paramount importance in driving wound angiogenesis by inducing VEGF. However, the underlying mechanisms for the regulation of adenosine receptors in VEGF as well as eNOS remain poorly understood. In the present study, we found that adenosine and the non-selective adenosine receptor agonists (NECA) induced tube formation in HMEC-1 in a dose-dependent manner. Adenosine or NECA (10 µmol/L) significantly augmented the number and length of the segments in comparison with the control. Simultaneously, VEGF and eNOS were significantly upregulated following the administration of 10 µmol/L NECA, while they were suppressed after A2B AR genetic silencing and pharmacological inhibition by MRS1754. In addition, VEGF expression and eNOS bioavailability elimination significantly reduced the formation of capillary-like structures. Furthermore, the activation of A2B AR by NECA significantly increased the intracellular cAMP levels and concomitant CREB phosphorylation, eventually leading to the production of VEGF in HMEC-1. However, the activated PKA-CREB pathway seemed to be invalidated in the induction of eNOS. Moreover, we found that the elicited PI3K/AKT signaling in response to the induction of NECA assisted in regulating eNOS but failed to impact on VEGF generation. In conclusion, the A2B AR activation-driven angiogenesis via cAMP-PKA-CREB mediated VEGF production and PI3K/AKT-dependent upregulation of eNOS in HMEC-1.  相似文献   

8.
A new series of benzimidazothiazole derivatives has been synthesized. The structure of the products was confirmed by spectroscopic techniques such as IR, NMR and mass spectroscopy. The tested compounds were evaluated for their anti-inflammatory activity either in vitro through the COX enzyme inhibition assay, or in vivo through carrageenan paw edema technique. Results revealed that compound 25 and 29 represented the most active ones among the entire series with % inhibition 72.19, 72.07 for COX-1, and 87.46, 87.38 for COX-2, respectively. Interestingly, all synthesized compounds exhibited IC50 values less than both reference drugs celecoxib and naproxen, indicating their superior potency. For compound 25, it showed about 340 and 198 times more potent than celecoxib and naproxen respectively as COX-1 inhibitor (IC50 value 0.044 vs. 15.000 and 8.700 µM), and 10 and 115 times more potent than the same drugs as COX-2 inhibitor (IC50 value 4.52 vs. 40.00 and 520.00 nM). The antitumor activity of the products was also evaluated and the results obtained are consistent with those obtained by the anti-inflammatory screening where compounds 25 and 29 proved to be the most active ones among the other compounds with %GI ranging from 31.5 to 62.5% and they exhibited the lowest IC50 values as well. The ADMET analysis of the tested compounds was also performed in addition to the molecular modeling studies that included flexible alignment, surface and electrostatic maps in addition to the Lipinisk's rule of five.  相似文献   

9.
Adenosine is an important regulatory metabolite and an inhibitor of platelet activation. Adenosine released from different cells or generated through the activity of cell-surface ectoenzymes exerts its effects through the binding of four different G-protein-coupled adenosine receptors. In platelets, binding of A2 subtypes (A2A or A2B) leads to consequent elevation of intracellular cyclic adenosine monophosphate, an inhibitor of platelet activation. The significance of this ligand and its receptors for platelet activation is addressed in this review, including how adenosine metabolism and its A2 subtype receptors impact the expression and activity of adenosine diphosphate receptors. The expression of A2 adenosine receptors is induced by conditions such as oxidative stress, a hallmark of aging. The effect of adenosine receptors on platelet activation during aging is also discussed, as well as potential therapeutic applications.  相似文献   

10.
The clinical management of neuroendocrine tumours is complex. Such tumours are highly vascular suggesting tumour-related angiogenesis. Adenosine, released during cellular stress, damage and hypoxia, is a major regulator of angiogenesis. Herein, we describe the expression and function of adenosine receptors (A(1), A(2A), A(2B) and A(3)) in neuroendocrine tumours. Expression of adenosine receptors was investigated in archival human neuroendocrine tumour sections and in two human tumour cell lines, BON-1 (pancreatic) and KRJ-I (intestinal). Their function, with respect to growth and chromogranin A secretion was carried out in vitro. Immunocytochemical data showed that A(2A) and A(2B) receptors were strongly expressed in 15/15 and 13/18 archival tumour sections. Staining for A(1) (4/18) and A(3) (6/18) receptors was either very weak or absent. In vitro data showed that adenosine stimulated a three- to fourfold increase in cAMP levels in BON-1 and KRJ-1 cells. The non-selective adenosine receptor agonist (adenosine-5'N-ethylcarboxamide, NECA) and the A(2A)R agonist (CGS21680) stimulated cell proliferation by up to 20-40% which was attenuated by A(2B) (PSB603 and MRS1754) and A(2A) (SCH442416) receptor selective antagonists but not by the A(1) receptor antagonist (PSB36). Adenosine and NECA stimulated a twofold increase in chromogranin A secretion in BON-1 cells. Our data suggest that neuroendocrine tumours predominantly express A(2A) and A(2B) adenosine receptors; their activation leads to increased proliferation and secretion of chromogranin A. Targeting adenosine signal pathways, specifically inhibition of A(2) receptors, may thus be a useful addition to the therapeutic management of neuroendocrine tumours.  相似文献   

11.
D1- and D2-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A1-type receptors are located in both neuron classes, and adenosine A2A-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca2+-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D1-type receptors increase, while D2-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca2+-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A1- and A2A-receptors have not been compared observing their actions on Ca2+-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca2+-currents by A1-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A1- and A2A-receptors. We demonstrate that A1-type receptors reduced Ca2+-currents in all SPNs tested. However, A2A-type receptors enhanced Ca2+-currents only in half tested neurons. Intriguingly, to observe the actions of A2A-type receptors, occupation of A1-type receptors had to occur first. However, A1-receptors decreased CaV2 Ca2+-currents, while A2A-type receptors enhanced current through CaV1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.  相似文献   

12.
Dicoumarol derivatives were synthesized in the InCl3 catalyzed pseudo three-component reactions of 4-hydroxycoumarin with aromatic aldehydes in excellent yields. The reactions were performed in water under microwave irradiation. All synthesized compounds were characterized using NMR, IR, and UV–Vis spectroscopy, as well as with TD-DFT. Obtained dicoumarols were subjected to evaluation of their in vitro lipid peroxidation and soybean lipoxygenase inhibition activities. It was shown that five of ten examined compounds (3e, 3h, 3b, 3d, 3f) possess significant potential of antilipid peroxidation (84–97%), and that compounds 3b, 3e, 3h provided the highest soybean lipoxygenase (LOX-Ib) inhibition (IC50 = 52.5 µM) and 3i somewhat lower activity (IC50 = 55.5 µM). The bioactive conformations of the best LOX-Ib inhibitors were obtained by means of molecular docking and molecular dynamics. It was shown that, within the bioactive conformations interior to LOX-Ib active site, the most active compounds form the pyramidal structure made of two 4-hydroxycoumarin cores and a central phenyl substituent. This form serves as a spatial barrier which prevents LOX-Ib Fe2+/Fe3+ ion activity to generate the coordinative bond with the C13 hydroxyl group of the α-linoleate. It is worth pointing out that the most active compounds 3b, 3e, 3h and 3i can be candidates for further examination of their in vitro and in vivo anti-inflammatory activity and that molecular modeling study results provide possibility to screen bioactive conformations and elucidate the mechanism of dicoumarols anti-LOX activity.  相似文献   

13.
Adenosine A2A receptor (A2AR) is a G protein-coupled receptor enriched in the striatum for which an increased expression has been demonstrated in certain neurological diseases. Interestingly, previous in vitro studies demonstrated that A2AR expression levels are reduced after treatment with S-adenosyl-L-methionine (SAM), a methyl donor molecule involved in the methylation of important biological structures such as DNA, proteins, and lipids. However, the in vivo effects of SAM treatment on A2AR expression are still obscure. Here, we demonstrated that 2 weeks of SAM treatment produced a significant reduction in the rat striatal A2AR messenger RNA (mRNA) and protein content as well as A2AR-mediated signaling. Furthermore, when the content of 5-methylcytosine levels in the 5′UTR region of ADORA2A was analyzed, this was significantly increased in the striatum of SAM-treated animals; thus, an unambiguous correlation between SAM-mediated methylation and striatal A2AR expression could be established. Overall, we concluded that striatal A2AR functionality can be controlled by SAM treatment, an issue that might be relevant for the management of these neurological conditions that course with increased A2AR expression.  相似文献   

14.
G protein-coupled receptors (GPCRs) are a major drug target and can be activated by a range of stimuli, from photons to proteins. Despite the progress made in the last decade in molecular and structural biology, their exact activation mechanism is still unknown. Here we describe new insights in specific regions essential in adenosine A2B receptor activation (A2BR), a typical class A GPCR. We applied unbiased random mutagenesis on the middle part of the human adenosine A2BR, consisting of transmembrane domains 4 and 5 (TM4 and TM5) linked by extracellular loop 2 (EL2), and subsequently screened in a medium-throughput manner for gain-of-function and constitutively active mutants. For that purpose, we used a genetically engineered yeast strain (Saccharomyces cerevisiae MMY24) with growth as a read-out parameter. From the random mutagenesis screen, 12 different mutant receptors were identified that form three distinct clusters; at the top of TM4, in a cysteine-rich region in EL2, and at the intracellular side of TM5. All mutant receptors show a vast increase in agonist potency and most also displayed a significant increase in constitutive activity. None of these residues are supposedly involved in ligand binding directly. As a consequence, it appears that disrupting the relatively “silent” configuration of the wild-type receptor in each of the three clusters readily causes spontaneous receptor activity.  相似文献   

15.
The inhibition of the UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase (LpxC) represents a promising strategy to combat infections caused by multidrug-resistant Gram-negative bacteria. In order to elucidate the functional groups being important for the inhibition of LpxC, the structure of our previously reported hydroxamic acid 4 should be systematically varied. Therefore, a series of benzyloxyacetohydroxamic acids was prepared, of which the diphenylacetylene derivatives 28 (Ki = 95 nM) and 21 (Ki = 66 nM) were the most potent inhibitors of Escherichia coli LpxC. These compounds could be synthesized in a stereoselective manner employing a Sharpless asymmetric dihydroxylation and a Sonogashira coupling in the key steps. The obtained structure–activity relationships could be rationalized by molecular docking studies.  相似文献   

16.
The discovery of new drugs for the treatment of neurodegenerative disorders, such as Parkinson's disease, has become an attractive field of research. Due to the regulation of D 2 receptor activity by A 2 A adenosine receptor, potent and selective ligands of A 2 A subtype could be useful tools to study neurodegenerative disorders. A series of 2,8-disubstituted-9-ethyladenine derivatives was synthesized and tested in binding affinity assay at human adenosine receptors. New compounds showed good affinity and selectivity at A 2 A receptor versus the other subtypes. The introduction of a bromine atom in 8-position increased the affinity of these compounds, leading to ligands with K i in the nanomolar range.  相似文献   

17.
The rise in multidrug resistant (MDR) cases of tuberculosis (TB) has led to the need for the development of TB drugs with different mechanisms of action. The genome sequence of Mycobacterium tuberculosis (Mtb) revealed twenty different genes coding for cytochrome P450s. CYP121A1 catalyzes a CC crosslinking reaction of dicyclotyrosine (cYY) producing mycocyclosin and current research suggests that either mycocyclosin is essential or the overproduction of cYY is toxic to Mtb. A series of 1,4-dibenzyl-2-imidazol-1-yl-methylpiperazine derivatives were designed and synthesised as cYY mimics. The derivatives substituted in the 4-position of the phenyl rings with halides or alkyl group showed promising antimycobacterial activity (MIC 6.25?μg/mL), with the more lipophilic branched alkyl derivatives displaying optimal binding affinity with CYP121A1 (iPr KD?=?1.6?μM; tBu KD?=?1.2?μM). Computational studies revealed two possible binding modes within the CYP121A1 active site both of which would effectively block cYY from binding.  相似文献   

18.
Procedures are described for the isolation of the individual components A1, A2, and A3 of native R-ovalbumin from freshly laid domestic hen eggs. Because heavy metal ion contaminants result in spurious irreproducible kinetics, particularly at high pH, considerable care is taken to avoid their presence. Kinetics studies are made of the behavior of whole R-ovalbumin and its individual components in urea solution over the pH range 3.7–9.6 following the reaction by determining absorbance differences at 233, 287, and 293 nm and ORD and CD changes at 350 and 221 nm, respectively. Reaction is rapid at low pH, slowing with increasing pH. Except under limited conditions, the reaction is not simple first order. Equations are presented for describing the reactions, and the nature of the reaction products is considered. Unfolding equilibrium profiles were also determined by ORD at several wavelengths and were not stigmoidal in shape and the normalized curves were not superimposed.Deceased December 8, 2001  相似文献   

19.
20.

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号