首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of anthracene metabolites produced by Armillaria sp. F022 was performed in the enzymatic system. The fungal culture was conducted in 100-mL Erlenmeyer flask containing mineral salt broth medium (20 mL) and incubated at 120 rpm for 5–30 days. The culture broth was then centrifuged at 10,000 rpm for 45 min to obtain the extract. Additionally, the effect of glucose consumption, laccase activity, and biomass production in degradation of anthracene were also investigated. Approximately, 92 % of the initial concentration of anthracene was degraded within 30 days of incubation. Dynamic pattern of the biomass production was affected the laccase activity during the experiment. The biomass of the fungus increased with the increasing of laccase activity. The isolation and characterization of four metabolites indicated that the structure of anthracene was transformed by Armillaria sp. F022 in two routes. First, anthracene was oxidized to form anthraquinone, benzoic acid, and second, converted into other products, 2-hydroxy-3-naphthoic acid and coumarin. Gas chromatography–mass spectrometry analysis also revealed that the molecular structure of anthracene was transformed by the action of the enzyme, generating a series of intermediate compounds such as anthraquinone by ring-cleavage reactions. The ligninolytic enzymes expecially free extracellular laccase played an important role in the transformation of anthracene during degradation period.  相似文献   

2.
Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography–mass spectrometry (GC–MS). 1-Hydroxypyrene was directly identified by GC–MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.  相似文献   

3.
The effects of structure and concentration of surfactants on the biodegradation of fluoranthene, a three rings polycyclic aromatic hydrocarbon in the aqueous phase, as well as their effects on the biodegradation and enzyme activity were investigated. The toxicity ranking of studied surfactants is: non-ionic Tween 80 <anionic sodium dodecyl sulfate <cationic Tetradecyltrimethylammonium bromide. The maximum growth of Armillaria sp. F022 (>4,500 mg/L) was showed by Tween 80 (10 mg/L) culture, manifesting that the non-ionic surfactant present in the culture were beneficial to the fungal growth. Laccase showed the highest enzymes activity in all surfactants culture. Non-ionic Tween 80 showed a significant result for laccase activity (1,902 U/L) in the Armillaria sp. F022 culture. The increased enzymes cumulative activity may stem directly from the rising fluoranthene biodegradability as addition of appropriate surfactants. The biotransformation of fluoranthene was greatly improved by Tween 80, and totally fluoranthene degradation was obtained as Tween 80 was 10 mg/L. Two fluoranthene metabolites were isolated from the culture medium and analyzed by a thin layer chromatography, UV visible spectrometer and gas chromatography–mass spectrometry (GC–MS). The oxidation of fluoranthene is initiated by oxygenation at the C-2,3 positions resulting 9-fluorenone. At the end of experiment, one metabolite was detected in the culture extract and identified as phthalic acid. Evidently, Armillaria sp. F022 seems efficient, high effective and deserves further application on the enhanced bioremediation technologies for the treatment of fluoranthene-contaminated soil.  相似文献   

4.
A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.  相似文献   

5.
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (μ) of 0.28 day?1 and biomass productivities of 132 mg ?L?1? day?1. The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g ?L?1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.  相似文献   

6.
A novel anthracene-degrading Gram-positive actinomycete, Microbacterium sp. strain SL10 was isolated from a hydrocarbon-contaminated soil at a mechanical engineering workshop in Lagos, Nigeria. The polluted soil had an unusually high total hydrocarbon content of 157 g/kg and presence of various heavy metals. The isolate tolerated salt concentration of more than 4 %. It resisted cefotaxime, streptomycin and ciprofloxacin, but susceptible to meropenem, linezolid and vancomycin. The isolate exhibited growth rate and doubling time of 0.82 days-1 and 0.84 days, respectively on anthracene. It degraded 57.5 and 90.12 % of anthracene within 12 and 21 days, respectively while the rate of anthracene utilization by the isolate was 4.79 mg l-1 d-1. To the best of our knowledge, this is the first report of isolation and characterization of anthracene-degrading Microbacterium sp.  相似文献   

7.
A laboratory study was conducted on biomass and lipid production by Scenedesmus sp. and the removal of total nitrogen (TN) and total phosphorus (TP) from filtered anaerobically digested piggery wastewater. The dry weight (DW), lipid content and productivity, total nitrogen, and total phosphorus removal rate were assessed in five media: modified soil extract (MSE) medium, 5 % anaerobic digested wastewater (ADWW), 10 % ADWW, 15 % ADWW, and 5 % ADWW supplemented with NaNO3. The highest biomass productivity appeared in the 15 % ADWW group, which was 20.4 % higher than MSE group. The highest lipid content was found in the 5 % ADWW group (31.60 %), while the highest lipid productivity was in the 10 % ADWW group (27.01 mg L?1 day?1). Compared with the 5 % ADWW group, the 5 % ADWW group supplemented with NaNO3 had a similar biomass amount but lower lipid content and productivity. The fatty acids percentage of Scenedesmus sp. showed a slight difference in different media, but with the four dominant fatty acids (C16:0, C18:1, C18:2, C18:3) accounting for 87 % of the total fatty acids, suggests that Scenedesmus sp. in ADWW medium was no different than MSE in terms of lipid composition and content. TN removal rates were 82.85, 82.51, 85.85, 91.28, and 78.71 % in groups 1 to 5, and TP removal rates were 53.05, 88.53, 87.77, 88.72, and 80.64 %. Our experiment also shows the feasibility of using ADWW as a substitute of all the elements of MSE medium except for carbon, which would significantly reduce the costs of microalgal culture.  相似文献   

8.
A recently isolated Australian Aurantiochytrium sp. strain TC 20 was investigated using small-scale (2 L) bioreactors for the potential of co-producing biodiesel and high-value omega-3 long-chain polyunsaturated fatty acids. Higher initial glucose concentration (100 g/L compared to 40 g/L) did not result in markedly different biomass (48 g/L) or fatty acid (12–14 g/L) yields by 69 h. This comparison suggests factors other than carbon source were limiting biomass production. The effect of both glucose and glycerol as carbon sources for Aurantiochytrium sp. strain TC 20 was evaluated in a fed-batch process. Both glucose and glycerol resulted in similar biomass yields (57 and 56 g/L, respectively) by 69 h. The agro-industrial waste from biodiesel production—glycerol—is a suitable carbon source for Aurantiochytrium sp. strain TC 20. Approximately half the fatty acids from Aurantiochytrium sp. strain TC 20 are suitable for development of sustainable, low emission sources of transportation fuels and bioproducts. To further improve biomass and oil production, fortification of the feed with additional nutrients (nitrogen sources, trace metals and vitamins) improved the biomass yield from 56 g/L (34 % total fatty acids) to 71 g/L (52 % total fatty acids, cell dry weight) at 69 h; these yields are to our knowledge around 70 % of the biomass yields achieved, however, in less than half of the time by other researchers using glycerol and markedly greater than achieved using other industrial wastes. The fast growth and suitable fatty acid profile of this newly isolated Aurantiochytrium sp. strain TC 20 highlights the potential of co-producing the drop-in biodiesel and high value omega-3 oils.  相似文献   

9.
This paper investigates the effect of temperature on nitrogen and carbon removal by aerobic granules from landfill leachate with a high ammonium concentration and low concentration of biodegradable organics. The study was conducted in three stages; firstly the operating temperature of the batch reactor with aerobic granules was maintained at 29 °C, then at 25 °C, and finally at 20 °C. It was found that a gradual decrease in operational temperature allowed the nitrogen-converting community in the granules to acclimate, ensuring efficient nitrification even at ambient temperature (20 °C). Ammonium was fully removed from leachate regardless of the temperature, but higher operational temperatures resulted in higher ammonium removal rates [up to 44.2 mg/(L h) at 29 °C]. Lowering the operational temperature from 29 to 20 °C decreased nitrite accumulation in the GSBR cycle. The highest efficiency of total nitrogen removal was achieved at 25 °C (36.8 ± 10.9 %). The COD removal efficiency did not exceed 50 %. Granules constituted 77, 80 and 83 % of the biomass at 29, 25 and 20 °C, respectively. Ammonium was oxidized by both aerobic and anaerobic ammonium-oxidizing bacteria. Accumulibacter sp., Thauera sp., cultured Tetrasphaera PAO and AzoarcusThauera cluster occurred in granules independent of the temperature. Lower temperatures favored the occurrence of denitrifiers of Zooglea lineage (not Z. resiniphila), bacteria related to Comamonadaceae, Curvibacter sp., Azoarcus cluster, Rhodobacter sp., Roseobacter sp. and Acidovorax spp. At lower temperatures, the increased abundance of denitrifiers compensated for the lowered enzymatic activity of the biomass and ensured that nitrogen removal at 20 °C was similar to that at 25 °C and significantly higher than removal at 29 °C.  相似文献   

10.
Ethyl tert-butyl ether (ETBE) enrichment was obtained by adding contaminated groundwater to a mineral medium containing ETBE as the sole carbon and energy source. ETBE was completely degraded to biomass and CO2 with a transient production of tert-butanol (TBA) and a final biomass yield of 0.37?±?0.08 mg biomass (dry weight).mg?1 ETBE. Two bacterial strains, IFP 2042 and IFP 2049, were isolated from the enrichment, and their 16S rRNA genes (rrs) were similar to Rhodococcus sp. (99 % similarity to Rhodococcus erythropolis) and Bradyrhizobium sp. (99 % similarity to Bradyrhizobium japonicum), respectively. Rhodococcus sp. IFP 2042 degraded ETBE to TBA, and Bradyrhizobium sp. IFP 2049 degraded TBA to biomass and CO2. A mixed culture of IFP 2042 and IFP 2049 degraded ETBE to CO2 with a biomass yield similar to the original ETBE enrichment (0.31?±?0.02 mg?biomass.mg?1 ETBE). Among the genes previously described to be involved in ETBE, MTBE, and TBA degradation, only alkB was detected in Rhodococcus sp. IFP 2042 by PCR, and none were detected in Bradyrhizobium sp. IFP 2049.  相似文献   

11.
Higher lipid production and nutrient removal rates are the pursuing goals for synchronous biodiesel production and wastewater treatment technology. An oleaginous alga Chlorella sp. HQ was tested in five different synthetic water, and it was found to achieve the maximum biomass (0.27 g L?1) and lipid yield (41.3 mg L?1) in the synthetic secondary effluent. Next, the effects of the stationary phase elongation and initial nitrogen (N) and phosphorus (P) concentrations were investigated. The results show that the algal characteristics were affected apparently under different N concentrations but not P, which were verified by Logistic and Monod models. At the early stationary phase, the algal biomass, lipid and triacylglycerols (TAGs) yields, and P removal efficiency increased and reached up to 0.19 g L?1, 46.7 mg L?1, 14.3 mg L?1, and 94.3 %, respectively, but N removal efficiency decreased from 86.2 to 26.8 % under different N concentrations. And the largest TAGs yield was only 6.4 mg L?1 and N removal efficiency was above 71.1 % under different P concentrations. At the late stationary phase, the maximal biomass, lipid and TAGs yields, and P removal efficiencies primarily increased as the initial N and P concentrations increase and climbed up to 0.49 g L?1, 99.2 mg L?1, 54.0 mg L?1, and 100.0 %, respectively. It is concluded that stationary phase elongation is of great importance and the optimal initial N/P ratio should be controlled between 8/1 and 20/1 to serve Chlorella sp. HQ for better biodiesel production and secondary effluent purification.  相似文献   

12.
A microbial community, selected by its ability to degrade triazinic herbicides was acclimatized by successive transfers in batch cultures. Initially, its ability to degrade prometryn, was evaluated using free cells or cells attached to fragments of a porous support. As carbon, nitrogen and sulfur sources, prometryn, (98.8 % purity), or Gesagard, a herbicide formulation containing 44.5 % prometryn and 65.5 % of adjuvants, were used. In batch cultures, a considerable delay in the degradation of prometryn, presumptively caused by the elevated concentration of inhibitory adjuvants, occurred. When pure prometryn was used, volumetric removal rates remarkably higher than those obtained with the herbicide formulation were estimated by fitting the raw experimental data to sigmoidal decay models, and differentiating them. When the microbial consortium was immobilized in a continuously operated biofilm reactor, the negative effect of adjuvants on the rate and removal efficiency of prometryn could not be detected. Using the herbicide formulation, the consortium showed volumetric removal rates greater than 20 g m?3 h?1, with prometryn removal efficiencies of 100 %. The predominant bacterial strains isolated from the microbial consortium were Microbacterium sp., Enterobacter sp., Acinetobacter sp., and Flavobacterium sp. Finally, by comparison of the prometryn removal rates with others reported in the literature, it can be concluded that the use of microbial consortia immobilized in a biofilm reactor operated in continuous regime offer better results than batch cultures of pure microbial strains.  相似文献   

13.
the research aim of this study was to characterize an isolated native strain of Chlorella sp. ACUF_802, well adapted to a high nitrate concentration environment and to investigate its potential to nitrate and phosphate removal from industrial wastewaters with the minimal addition of chemical reagents and energy. The isolated strain was identified and evaluated for its capability to support biomass growth and nutrient removal from synthetic wastewater in batch tests using different concentrations of carbon and nitrogen, different carbon sources and N:P ratios. The strain was isolated via the plating method from the settler of a pilot scale moving bed biofilm reactor performing a nitrification process. The strain was identified using molecular analysis with rDNA primers. Using sodium bicarbonate as carbon source, the batch productivity (71.43 mg L?1 day?1) of the strain Chlorella sp. ACUF_802 was calculated with a logistic model and compared to the values reported in the literature. Assays on the effect of the N:P ratio indicated that the productivity was increased 36% when the N:P ratio was close to 1 (111.96 mg L?1 day?1), but for a complete phosphorus removal a 5:1 N:P ratio with nitrate concentrations ≤125 mg?L?1 is recommended. The isolated microalgae strain Chlorella sp. ACUF_802 showed versatility to grow in the synthetic industrial wastewaters tested and can be considered as an appropriate organism for nitrogen removal from industrial wastewaters in the presence of an organic or inorganic carbon source.  相似文献   

14.

Background and aims

The selective inoculation of specific hydrocarbon-degrading microbes into the plant rhizosphere offers a useful means for remediating hydrocarbon-contaminated soils. The effect of inoculating a seed-borne filamentous fungus (Lewia sp.) on hydrocarbon removal by Festuca arundinacea and its growth was studied on perlite (model soil) and soil, both spiked with hydrocarbons.

Methods

A hydrocarbon mixture (1,500 mg kg?1) of two polycyclic aromatic hydrocarbons (PAH), phenanthrene and pyrene, blended with hexadecane (1.0:0.5:0.5 weight) was used. Greenhouse experiments were carried out for 45 days. Inoculated and non-inoculated plants were grown in dark cylindrical glass pots containing perlite or soil.

Results

Inoculation with Lewia sp. stimulated (100 %) root growth in spiked perlite. Inoculated plants showed higher phenanthrene removal (100 %) compared to non-inoculated plants in perlite and soil. Pyrene removal by inoculated plants was 37-fold higher than that by non-inoculated plants in perlite; in soil, pyrene removal by inoculated plants (97.9 %) differed significantly from that of non-inoculated plants (91.4 %). Accumulation of pyrene in roots (530.9 mg kg?1 of dry roots) was promoted in perlite.

Conclusions

Our results demonstrate that Lewia sp. (endophytic fungus) improved the efficiency of PAH removal by F. arundinacea, on both perlite and soil, stimulating pyrene accumulation in roots.  相似文献   

15.
Unlike most bioluminescent fungi, mycelia of Armillaria and Desarmillaria are constitutively bioluminescent while mature mushrooms are not. The absence of the luciferin, 3-hydroxyhispidin, and its precursor hispidin in mature mushrooms have been proposed to explain the lack of bioluminescence from Armillaria mushrooms. Using three North American species, A. gallica, A. mellea and D. tabescens (syn., Armillaria tabescens), we documented a decline in luminescence of ten fold during the transition from mycelia to, immature mushrooms (i.e., pins) for the two Armillaria species. As pins matured, luminescence declined by an additional two or three orders of magnitude. Lower initial luminescence of D. tabescens mycelia declined to negligible levels during mushroom development. Further, light production was localized in the gills and lower stipe of A. mellea mushrooms. The decline in luminescence during mushroom formation was reversed by addition of hispidin to stipe or gills which significantly enhanced luminescence by one and three orders of magnitude, respectively. We conclude that the modulation of Armillaria and Desarmillaria luminescence is achieved by luciferin availability early in mushroom development. However, since the temporal regulation of bioluminescence differs between Armillaria species and other genera, we conclude that bioluminescence in Armillaria is under unique selective pressures.  相似文献   

16.
To find a potential biocontrol agent against Fusarium sp. in apple seedlings, an endophytic bacterium strain was isolated from apple tree tissues. The inhibitive efficiency of the isolated strain against the hyphal growth of Fusarium sp. and Rhizoctonia solani was tested. Strain Y-1 showed significant inhibitory effects against Fusarium oxysporum, F. moniliforme, F. proliferatum, F. solani and R. solani. Its antifungal activity against F. oxysporum was the highest, reaching up to 64.90 %. In vivo tests indicated that strain Y-1 effectively protects apple from F. oxysporum infections. The control effect reached 92.26 % when bacterial inoculation was performed 3 days prior to pathogen inoculation. Strain Y-1 could colonize the rhizosphere and tissues within 30 days. It was also able to induce systemic resistance in apple seedlings as shown by the activities of SOD and POD. Strain Y-1 significantly increased the root length, root wet and dry weights, and plant height of the apple seedlings compared with the control group. The homology analysis of the 16S rRNA sequence, together with morphological, physical, and biochemical analyses, revealed that strain Y-1 is Bacillus subtilis.  相似文献   

17.
The microalga Nannochloropsis sp. was cultured under different initial population densities (IPDs) ranging from 0.11 to 9.09 g L?1. The IPD affected the biomass and lipid accumulation significantly. The algal cultured with higher IPD resulted higher biomass concentration (up to 13.07 g L?1) in 10 days growth. The biomass productivity with 0.98 g L?1 IPD was 0.75 g L?1 d?1 which was higher than that of other IPDs. For IPDs ranging from 0.11 to 0.98 g L?1, with the increase of IPD, the biomass productivity increased, while for IPD over 0.98 g L?1, the biomass productivity decreased. Lipid content of the algal culture started with 0.11 g L?1 IPD reached to 42 % of dry weight. But with the increase of IPD, the lipid content decreased. Lipid composition was analyzed using thin layer chromatography coupled with flame ionization detection (TLC/FID). Seven lipid classes were identified and quantified. The main reserve lipid, triacylglyceride (TAG), accumulated under all different IPD conditions. However, with the increasing IPD values, TAG content decreased from 59.1 to 23.5 % of the total lipids. Based on these results, to obtain the maximal biomass productivity and lipid productivity of Nannochloropsis sp. in mass cultivation systems, it is necessary to select an appropriate IPD.  相似文献   

18.
A new green microalgal species was isolated, identified and investigated for its biomass production and nutrient removal efficiency in dairy and winery wastewater in this study. The 18S rRNA-based phylogenetic analysis revealed that this new strain is a Diplosphaera sp. and was designated strain MM1. The growth of this strain was evaluated in different diluted dairy and winery wastewaters. The highest algal biomass production (up to 2.3 g L?1) was obtained in dairy wastewater (D3; dairy wastewater 1:2 deionised water) after 14 days of culture. However, for winery wastewater, the highest algal biomass production (up to 1.46 g L?1) was obtained in wastewater combination W2 (winery wastewater 1:1 deionised water) after 14 days of culture. Turbid dairy wastewater with high concentration of nitrogen and phosphorous slowed down the initial growth of the alga. However, at the end of day 14, biomass production was nearly twofold higher than that of winery wastewater. The findings from both types of wastewater suggest that Diplosphaera sp. MM1 has potential for its application in generating biomass with simultaneous remediation of nutrient-rich wastewater.  相似文献   

19.
Fungal degradation is emerging as a new powerful tool for the removal of potent neurotoxin pesticide, monocrotophos. Therefore, the present study is aimed at comparative characterization of monocrotophos degrading ability of three different fungal strains. Fungal strains were isolated from local agricultural soil by enrichment culture method, screened by gradient culture and identified as Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Growth kinetics revealed a direct positive influence of monocrotophos on the viability of fungal isolates. Fungal degradation was studied in phosphorus free liquid culture medium supplemented with 150 mg L?1 concentration of monocrotophos for a period of 15 days under optimized culture conditions. Degradation of MCP followed first order kinetics with k deg of 0.007, 0.002 and 0.005 day?1 and half life (t 1/2) of 4.21, 12.64 and 6.32 days for A. flavus, F. pallidoroseum and Macrophomina sp. respectively. To the best of our knowledge, it is the first report signifying the potential of monocrotophos degradation by Fusarium and Macrophomina sp. The results were further confirmed by HPTLC and FTIR which indicates disappearance of monocrotophos by hydrolytic cleavage of vinyl phosphate bond. Degradation of monocrotophos by fungal isolates was accompanied by the release of extracellular alkaline phosphatases, inorganic phosphates and ammonia. The overall comparative analysis followed the order of A. flavus > Macrophomina sp. > F. pallidoroseum. Therefore, it could be concluded from the study that these three different fungal strains could be effectively used as a potential candidate for the removal of monocrotophos from contaminated sites.  相似文献   

20.
The present study was carried out to investigate cyanobacteria as a potential source for biodiesel production isolated from fresh water bodies of Sri Lanka. Semi mass culturing and mass culturing were carried out to obtain biomass for extracting total lipids. Fatty acid methyl ester (FAME) or biodiesel was produced from extracted lipid by trans-esterification reaction. FAME component was identified using gas chromatography (GC). Atotal of 74 uni-algal cultures were obtained from Biofuel and Bioenergy laboratory of the National Institute of Fundamental Studies (NIFS), Kandy, Sri Lanka. The total lipid content was recorded highest in Oscillatoria sp. (31.9 ± 2.01% of dry biomass) followed by Synechococcus sp. (30.6 ± 2.87%), Croococcidiopsis sp. (22.7 ± 1.36%), Leptolyngbya sp. (21.15 ± 1.99%), Limnothrixsp. (20.73 ± 3.26%), Calothrix sp. (18.15 ± 4.11%) and Nostoc sp. (15.43 ± 3.89%), Cephalothrixsp. (13.95 ± 4.27%), Cephalothrix Komarekiana (13.8 ± 3.56%) and Westiellopsisprolifica (12.80 ± 1.97%). FAME analysis showed cyanobacteria contain Methyl palmitoleate, Linolelaidic acid methyl ester, Cis-8,11,14-eicosatrienoic acid methyl ester, Cis-10-heptadecanoic acid methyl ester, Methyl myristate, Methyl pentadecanoate, Methyl octanoate, Methyl decanoate, Methyl laurate, Methyl tridecanoate, Methyl palmitoleate, Methyl pentadeconoate, Methyl heptadeconoate, Linolaidic acid methyl ester, Methyl erucate, Methyl myristate, Myristoloeic acid, Methyl palmitate, Cis-9-oleic acid methyl ester, Methyl arachidate and Cis-8,11,14-ecosatrieconoic acid methyl ester. The present study revealed that cyanobacteria isolated from Sri Lanka are potential source for biodiesel industry because of their high fatty acid content. Further studies are required to optimize the mass culture conditions to increase thelipid content from cyanobacterial biomass along with the research in the value addition to the remaining biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号