首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, we here propose an alternative pathway of primitive fatty acid synthesis that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy (ATP). Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.  相似文献   

2.
The use of the steady-state treatment in the study of rapid kinetics was illustrated with experiments on horse liver alcohol dehydrogenase using a stopped-flow spectrophoto-fluorimeter. The amplitude of the “burst” formation of NADH fluorescence observed in the transient reaction of horse liver alcohol dehydrogenase, NAD+, and ethanol corresponded mainly to the steady-state concentration of the binary complex, horse liver alcohol dehydrogenase-NADH. The results on the forward and reverse reactions are shown to be consistent with a Theorell-Chance mechanism. The formation of the ternary complexes appeared to decrease the “burst” formation of the binary complex in the benzylalcoholbenzaldehyde system. There was no evidence for the participation of nonequivalent states of the two active sites in the enzyme molecule. It is shown that the equilibrium constants and rate constants involving the mechanisms of LADH reactions can be evaluated using the data of the amplitude of the “burst” reaction in similar manner to that of usual steady-state kinetics.  相似文献   

3.
One of the common explanations for oxidative stress in the physiological milieu is based on the Fenton reaction, i.e. the assumption that radical chain reactions are initiated by metal-catalyzed electron transfer to hydrogen peroxide yielding hydroxyl radicals. On the other hand — especially in the context of so-called “iron switches” — it is postulated that cellular signaling pathways originate from the interaction of reduced iron with hydrogen peroxide.

Using fluorescence detection and EPR for identification of radical intermediates, we determined the rate of iron complexation by physiological buffer together with the reaction rate of concomitant hydroxylations of aromatic compounds under aerobic and anaerobic conditions. With the obtained overall reaction rate of 1,700 M-1s-1 for the buffer-dependent reactions and the known rates for Fenton reactions, we derive estimates for the relative reaction probabilities of both processes.

As a consequence we suggest that under in vivo conditions initiation of chain reactions by hydroxyl radicals generated by the Fenton reaction is of minor importance and hence metal-dependent oxidative stress must be rather independent of the so-called “peroxide tone”. Furthermore, it is proposed that — in the low (subtoxic) concentration range — hydroxylated compounds derived from reactions of “non-free” (crypto) OH radicals are better candidates for iron-dependent sensing of redox-states and for explaining the origin of cellular signals than the generation of “free” hydroxyl radicals.  相似文献   

4.
A class of systems is characterized by the asymmetrical distribution of a sink and a source reaction, the asymmetry of the global chemical equation (energy liberation) and by an asymmetrical one-wave space profile. These systems belong to the family of primary chemical cells and can deplete and enrich the media they separate. A “ one way ” transport-reaction chain is needed for specific “ real ” active transport. A two enzyme model of this class is described in which the spatial asymmetry is due to a (diffusive) pH gradient; this distribution of “ potential ” enzyme activities is called the “ functional structure ”. Equal potential enzyme activities and absence of reactive back action on local pH are assumed in the “ square model ” version of the pump. Analytical expressions of the enzymatic diffusion reactions are derived for zero and first order kinetics, i.e. in function of substrate concentrations. Tables of equations are presented. The intrinsic properties of the pump are characterized by (dimensionless) transport reaction parameters, (membrane composition); the “ potential ” activity is controlled by the pH gradient; the “ effective ” pumping is also a function of the substrate concentrations on the boundaries.  相似文献   

5.
Plant cells have two cytoplasmic pathways of glycolysis and gluconeogenesis for the reversible interconversion of fructose 6-phosphate (F-6-P) and fructose 1,6-bisphosphate (F-1,6-P2). One pathway is described as a maintenance pathway that is catalyzed by a nucleotide triphosphate-dependent phosphofructokinase (EC 2.7.1.11; ATP-PFK) glycolytically and a F-1,6 bisphosphatase (EC 3.1.3.11) gluconeogenically. These are non-equilibrium reactions that are energy consuming. The second pathway, described as an adaptive pathway, is catalyzed by a readily reversible pyrophosphate-dependent phosphofructokinase (EC 2.7.1.90; PP-PFK) in an equilibrium reaction that conserves energy through the utilization and the synthesis of pyrophosphate. A constitutive regulator cycle is also present for the synthesis and hydrolysis of fructose 2,6-bisphosphate (F-2,6-P2) via a 2-kinase and a 2-phosphatase, respectively. The pathway catalyzed by the ATP-PFK and F-1,6-bisphosphatase, the maintenance pathway, is fairly constant in maximum activity in various plant tissues and shows less regulation by F-2,6-P2. Plants use F-2,6-P2 initially to regulate the adaptive pathway at the reversible PPi-PFK step. The adaptive pathway, catalyzed by PPi-PFK, varies in maximum activity with a variety of phenomena such as plant development or changing biological and physical environments. Plants can change F-2,6-P2 levels rapidly, in less than 1 min when subjected to rapid environmental change, or change levels slowly over periods of hours and days as tissues develop. Both types of change enable plants to cope with the environmental and developmental changes that occur during their lifetimes. The two pathways of sugar metabolism can be efficiently linked by the cycling of uridylates and pyrophosphate required for sucrose breakdown via a proposed sucrose synthase pathway. The breakdown of sucrose via the sucrose synthase pathway requires half the net energy of breakdown via the invertase pathway. Pyrophosphate occurs in plant tissues as a substrate pool for biosynthetic reactions such as the PPi-PFK or uridine diphosphate glucose pyrophosphorylase (EC 2.7.7.9; UDPG pyrophosphorylase) that function in the breakdown of imported sucrose. Also, pyrophosphate links the two glycolytic/gluco-neogenic pathways; and in a reciprocal manner pyrophosphate is produced as an energy source during gluconeogenic carbon flow from F-1,6-P2 toward sucrose synthesis.  相似文献   

6.
Structural and functional organization of the animal fatty acid synthase   总被引:23,自引:0,他引:23  
The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between and within subunits.  相似文献   

7.
The steady-state kinetics of DT diaphorase [NAD(P)H dehydrogenase (quinone): EC 1.6.99.2]from rat liver has been studied using 2,6-dichloroindophenol as electron acceptor and NADH as electron donor. The υ vs [S]curves revealed intermediary plateau and “trough” regions when NADH and dichloroindophenol were the varying substrates. It has been demonstrated by statistical analysis that equations involving fourth-power terms of the substrate concentrations are able to describe the “trough.” These equations have been previously shown in the literature to be capable of describing intermediary plateau regions also. Changes in protein concentration did not affect these curves substantially, whereas changes in pH caused shifts in the positions of their intermediary plateau regions. Increase of the ionic strength by addition of 0.25–0.5 m KCl changed the intermediary plateau region into a “trough” in the υ vs [NADH] plot, whereas the “trough” of the υ vs [dichloroindophenol]plot was transformed into an intermediary plateau. Changes in the temperature of the assay system also led to changes in the kinetic curves. Incubation of the enzyme at 23 °C for 150 min caused disappearance of the intermediary plateau and “trough” regions in the υ vs [NADH]or [dichloroindophenol]plots, respectively. These appeared again after cooling at 0 ° C.The effect of pH, ionic strength, and temperature are discussed within the framework of two main models chosen by statistical analysis: (1) the reaction is catalyzed by a four-site enzyme exhibiting positive and negative cooperativity with respect to the catalytic (kinetic) activity of the sites involved; (2) two enzyme species each possessing two sites are present. These two are either independent or interconnected via a slow isomerization step.  相似文献   

8.
9.
The key reaction of flavonoid biosynthesis, the condensation of the acyl residues from one molecule of 4-coumaroyl-CoA and three molecules of malonyl-CoA, has previously been assumed to be catalyzed by a “flavanone synthase.” Results are presented here which indicate that not the flavanone but the isomeric chalcone is the immediate product of the synthase reaction. The new term “chalcone synthase” is therefore suggested for the enzyme.  相似文献   

10.
Previous reports implicate UDPglucose as an active glucosyl donor for the unprimed reaction and “glucoprotein” formation in glycogen biosynthesis in Escherichia coli. Results presented here indicate that UDPglucose and GDPglucose are glucosyl donors in the primed and unprimed reactions catalyzed by purified E. coli B glycogen synthase at less than 5% the rate observed when ADPglucose is the donor. The unprimed reaction is stimulated by 0.25 m citrate and a high molecular weight product is formed similar to that produced when ADPglucose is the glucosyl donor. Physiological amounts of branching enzyme and high concentrations of glycogen inhibit transfer from UDPglucose and GDPglucose. In addition, transfer from UDPglucose is inhibited by ADPglucose. These results strongly suggest that ADPglucose is the physiological donor in both the primed and unprimed reactions. Furthermore, these and previously reported results suggest that one enzyme is involved in the catalysis of the primed, unprimed, and TCA-insoluble product formation reactions. Antiserum prepared against purified E. coli B glycogen synthase inactivates transfer of glucose from either ADPglucose or UDPglucose in the above reactions catalyzed by E. coli B crude extracts. Purified E. coli B glycogen synthase preparations contain significant amounts of α-glucan primer. Evidence shows that this glucan is not covalently attached to the enzyme. Results presented show that formation of material insoluble in TCA and previously considered to be due to “glucoprotein” formation, is in fact due to the generation of long chain length glucan molecules intrinsically acid insoluble. The data suggest that previous results purported to be de novo synthesis of glycogen are due to glucan associated with the glycogen synthase and not to formation of a “glucoprotein” intermediate which then acts as primer for further oligosaccharide synthesis.  相似文献   

11.
The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of “critical siphon.” We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of “drainable” and “self-replicable” (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.  相似文献   

12.
J Turnbull  J F Morrison 《Biochemistry》1990,29(44):10255-10261
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase by substrate analogues, by the end product, tyrosine, and by the protein modifying agent iodoacetate has been investigated. The purpose of the investigations was to determine if the two reactions catalyzed by the enzyme occur at a single active site or at two separate active sites. Evidence in support of the conclusion that the mutase and dehydrogenase reactions are catalyzed at two similar but distinct active sites comes from the following results: (1) A substrate analogue (endo-oxabicyclic diacid) that inhibits competitively the mutase reaction has no effect on the dehydrogenase reaction. (2) Malonic acid and several of its derivatives act as inhibitory analogues of chorismate in the mutase reaction and of prephenate in the dehydrogenase reaction. However, different dissociation constants for their interaction with the free enzyme are obtained from studies on the mutase and dehydrogenase reactions. (3) The kinetics of the inhibition by tyrosine of the mutase reaction in the presence of NAD differ from those of the dehydrogenase reaction. The results confirm that carboxymethylation with iodoacetate of one cysteine residue per subunit eliminates both mutase and dehydrogenase activities and show that the inactivation of the enzyme activities is due to iodoacetate functioning as an active site directed inhibitor.  相似文献   

13.
Cyclodextrin glycosyltransferase (CGTase) uses an alpha-retaining double displacement mechanism to catalyze three distinct transglycosylation reactions. To investigate these reactions as catalyzed by the CGTase from Thermoanaerobacterium thermosulfurigenes the enzyme was overproduced (8 mg.L(-1) culture) using Bacillus subtilis as a host. Detailed analysis revealed that the three reactions proceed via different kinetic mechanisms. The cyclization reaction (cyclodextrin formation from starch) is a one-substrate reaction, whereas the other two transglycosylation reactions are two-substrate reactions, which obey substituted enzyme mechanism kinetics (disproportionation reaction) or ternary complex mechanism kinetics (coupling reaction). Analysis of the effects of acarbose and cyclodextrins on the disproportionation reaction revealed that cyclodextrins are competitive inhibitors, whereas acarbose is a mixed type of inhibitor. Our results show that one molecule of acarbose binds either in the active site of the free enzyme, or at a secondary site of the enzyme-substrate complex. The mixed inhibition thus indicates the existence of a secondary sugar binding site near the active site of T. thermosulfurigenes CGTase.  相似文献   

14.
The reactions of triethanolamine and four other tertiary amino alcohols with six active ester substrates were studied in the pH range 6–10 at 30°C. The reaction products were in all cases the respective O-acyl-amino alcohols. Analysis of the effects of substituents in the leaving group as well as in the acyl moiety of the substrates showed that the ester product was formed by direct attack of the nucleophilic hydroxyl group. Comparison with reactions of tertiary amines with the same substrates supports this conclusion. The reactions of tertiary amino alcohols were also compared with those of zwitterionic quaternary amino alcohols and 3-quinuclidinol, a “rigid” tertiary amino alcohol. On the basis of these comparisons, it is proposed that one of the pathways for the predominant effect of the neutral species of tertiary amino alcohols involves intramolecular general base assistance by the tertiary amino group to the nucleophilic attack of the hydroxylic oxygen on the substrate. The contribution of this pathway to the rate of reaction is evaluated.In several systems the first product of the reaction, an O-acyl-amino alcohol, undergoes relatively rapid deacylation, the overall reaction being thus hydrolysis of active esters, catalyzed by the amino alcohol via an acylation-deacylation mechanism.  相似文献   

15.
Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate and 3-O-methylgallate (3MGA), respectively. 3MGA is metabolized via multiple pathways involving 3MGA 3,4-dioxygenase, protocatechuate 4,5-dioxygenase (LigAB), and gallate dioxygenase whereas protocatechuate is degraded via the protocatechuate 4,5-cleavage pathway. Here the secondary role of LigAB in syringate metabolism is investigated. The reaction product of 3MGA catalyzed by His-tagged LigAB was identified as 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) and 2-pyrone-4,6-dicarboxylate (PDC), indicating that 3MGA is transformed to CHMOD and PDC by both reactions catalyzed by DesZ and LigAB. Mutant analysis revealed that the 3MGA catabolic pathways involving LigAB are functional in SYK-6.  相似文献   

16.
2,6-Dichlorophenolindophenol reacts with the sulfhydryl group at the active site of apo-glyceraldehyde-3-phosphate dehydrogenase isolated from chicken muscle to form a leuco dye-enzyme adduct which is yellow. The leuco dye-enzyme adduct is oxidized by 2,6-dichlorophenolindophenol to form an oxidized dye-enzyme adduct which is blue. NADH converts the oxidized enzyme-dye adduct to the leuco enzymedye adduct. The enzyme-dye adducts catalyze the oxidation of NADH by 2,6-dichlorophenolindophenol in a reaction which exhibits “ping-pong” kinetics. The pH rate behavior of the reaction catalyzed by the enzyme-dye adduct differs considerably from the non-enzymatic oxidation of NADH by 2,6-dichlorophenolindophenol. A scheme for the reaction catalyzed by the enzyme-dye adduct which is consistent with the experimental observations is presented.  相似文献   

17.
Evidence that proteins may unfold utilizing complex competing pathways comes from a new pulse-labeling protocol in which the change in reactivity of a single cysteine residue in a protein during unfolding is measured, making use of its easily monitored reaction with the Ellman reagent, dithionitrobenzoic acid. The kinetics of unfolding of two single cysteine-containing mutant forms of the small protein barstar, C82A, which contains only Cys40, and C40A, which contains only Cys82, have been studied. The data suggest that unfolding occurs via two parallel pathways, each forming competing intermediates. In one of these early intermediates, Cys40 and Cys82 are already as reactive as they are in the fully unfolded protein, while in the other intermediate, the Cys thiol groups are unreactive. One more long-lived intermediate also needs to be included on the pathway defined by the early intermediate with unreactive Cys thiol groups to account for the difference in the rates of fluorescence change and of change in Cys40 reactivity. The demonstration of multiple intermediates and pathways for unfolding indicates that protein unfolding reactions can be as complex as protein folding reactions.  相似文献   

18.
The kinetics of the hydrogen-deuterium exchange reactions of double-helical poly (rI) · poly (rC), single-stranded poly(rC) and poly(rI), inosine, and cytosine- 5′-phosphoric acid have been examined, at various temperatures in the range 20 °C to 52 °C, by stopped-flow ultraviolet spectrophotometry, in the region 270 to 300 nm. For the solution of double-helical poly(rI) · poly(rC), two first-order deuteration reactions were found: a fast one and a slow one. At 25 °C and at pH 7.0, the rate constant was 12.3 s?1 for the fast reaction, and 0.13 s?1 for the slow reaction. The rate constant of the fast reaction is nearly equal to that of the single-stranded poly(rC) (12.6 s?1), and is assigned to the deuteration at the amino hydrogen (that is, free from the C · I hydrogen bond) of the cytosine residue. The slow reaction is attributable to the deuteration of the two hydrogens: the amino hydrogen of rC and imide hydrogen of rI, which are rapidly exchanging with each other within every rC · rI base-pair. From the observed temperature effect on this slow reaction rate, it has been concluded that there are two types of “opening process” that are relevant to the hydrogen exchange reaction; one of them is predominent in the range 47 °C to 52 °C and the other in the temperature region lower than 47 °C. The enthalpy (H) and entropy (S) differences of the “open” and “closed” forms in the former type process are ΔH = 167 kcal per mole and ΔS = 507 e.u., while in the latter ΔH = 8.1 kcal per mole and ΔS = 10 e.u..  相似文献   

19.
Thermodynamics impose a major constraint on the structure of metabolic pathways. Here, we use carbon fixation pathways to demonstrate how thermodynamics shape the structure of pathways and determine the cellular resources they consume. We analyze the energetic profile of prototypical reactions and show that each reaction type displays a characteristic change in Gibbs energy. Specifically, although carbon fixation pathways display a considerable structural variability, they are all energetically constrained by two types of reactions: carboxylation and carboxyl reduction. In fact, all adenosine triphosphate (ATP) molecules consumed by carbon fixation pathways - with a single exception - are used, directly or indirectly, to power one of these unfavorable reactions. When an indirect coupling is employed, the energy released by ATP hydrolysis is used to establish another chemical bond with high energy of hydrolysis, e.g. a thioester. This bond is cleaved by a downstream enzyme to energize an unfavorable reaction. Notably, many pathways exhibit reduced ATP requirement as they couple unfavorable carboxylation or carboxyl reduction reactions to exergonic reactions other than ATP hydrolysis. In the most extreme example, the reductive acetyl coenzyme A (acetyl-CoA) pathway bypasses almost all ATP-consuming reactions. On the other hand, the reductive pentose phosphate pathway appears to be the least ATP-efficient because it is the only carbon fixation pathway that invests ATP in metabolic aims other than carboxylation and carboxyl reduction. Altogether, our analysis indicates that basic thermodynamic considerations accurately predict the resource investment required to support a metabolic pathway and further identifies biochemical mechanisms that can decrease this requirement.  相似文献   

20.
Nachum Dafny 《Life sciences》1980,26(9):737-742
In this study, average photic evoked responses were recorded simultaneously in freely behaving rats from the pineal body and the ventromedial hypothalamus; permanent semimicroelectrodes were implanted several days before the experiments were begun, and both local anesthesia (xylocaine), sympathectomy, and general anesthesia (barbiturate) were used as tools to find out whether or not photic responses are transmitted to the pineal via the superior cervical ganglion (scg)-nervi conorii and/or through another CNS route. The experiments demonstrated that the photic evoked responses recorded from the pineal are transmitted via two separate routes: one, a fast pathway with a “shorter” latency, via the CNS, i.e., the habencular posterior commissure complex, and the other a “slower” (or longer) pathway via the scg to the pineal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号