首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

4.
Molecular Biology Reports - Noscapine is an antitumor alkaloid derived from Papaver somniferum plants. Our previous study has demonstrated that exposure of noscapine on primary murine fetal...  相似文献   

5.
Although peroxisome proliferator-activated receptor-γ (PPARγ) and adenosine A2A receptor (A2AR) are reported to be anti-inflammatory factors in acute lung injury (ALI), their internal link and synergic or antagonistic effect after activation are poorly understood. Here, we found that PPARγ and A2AR could upregulate the mRNA and protein expressions of each other in lung tissues of LPS-induced mouse ALI model and murine macrophages. Further investigation demonstrated that PPARγ upregulated A2AR expression by directly binding to a DR10 response element (? 218 to ? 197) within A2AR gene promoter region. Instead of directly interacting with PPARγ, A2AR stimulated PPARγ expression via protein kinase A (PKA)–cAMP response element binding protein (CREB) signaling by provoking the binding of CREB to a cAMP responsive element (CRE)-like site in PPARγ gene promoter region. In addition, combination of PPARγ and A2AR agonists was found to exert obviously better effect on suppressing neutrophil infiltration and inflammatory cytokine expressions, attenuating lung edema, pathological changes and improving lung function of blood gas exchange than their single application. These findings reveal a novel functional positive feedback loop between PPARγ and A2AR signaling to potentialize their effect on inhibiting inflammation and attenuating lung damages in ALI. It suggests that targeting this PPARγ–A2AR signaling rather than PPARγ or A2AR alone may be a more attractive and efficient potential therapeutic strategy for ALI.  相似文献   

6.
Hui Tao  Min Nuo  Su Min 《Cytotechnology》2018,70(1):169-176
Sufentanil, a lipophilic opioid, is the most frequently used clinical drug for ischemic heart disease. The effects of sufentanil on MAPK signaling in ischemic heart disease were explored. The effects of sufentanil on ischemia–reperfusion (IR)-induced myocardial injury in a rat model were examined. The serum levels of CK, LDH, MDA and SOD, and the activities of Na+–K+-ATPase and Ca2+–Mg2+-ATPase were measured. The levels of total and phosphorylated ERK1/2, JNK, and p38 were measured by western blotting in the heart, and the myocardial H9C2 cell line was studied. Using the Cell Counting Kit-8, the growth rate of H9C2 cells affected by sufentanil was studied. The serum levels of CK, LDH and MDA were higher in the IR group than in the SO and SUF groups. The SOD level, as well as the activities of Na+–K+-ATPase and Ca2+–Mg2+-ATPase, were lower in the SO and SUF groups than in the IR group. The phosphorylated ERK1/2 level was lower in the IR group than in the SO and SUF groups. The growth rate of H9C2 cells increased with the concentration of sufentanil and the exposure time. The phosphorylated ERK level was upregulated by 4–12 h of sufentanil exposure, indicating that the effects were time-dependent. Furthermore, an inhibition of ERK signaling by chemical inhibition suppressed the sufentanil-mediated increase in the growth rate of H9C2 cells. Sufentanil appears to be beneficial for cases of worsening ischemic heart disease. Further studies are necessary before a clinical application is considered.  相似文献   

7.
Transglutaminase 2 knockout (TGase2(-/-)) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-κB (NF-κB) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-κB activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-κB activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-κB activity in mouse embryogenic fibroblasts (MEFs) from TGase2(-/-) mice remained at the control level while the NF-κB activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-κB activity remained at the control level in TGase2(-/-) mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-κB activation in ischemic injury.  相似文献   

8.
Novel therapeutic targets are required to protect the heart against cell death from acute ischemia–reperfusion injury (IRI). Mutations in the DJ-1 (PARK7) gene in dopaminergic neurons induce mitochondrial dysfunction and a genetic form of Parkinson''s disease. Genetic ablation of DJ-1 renders the brain more susceptible to cell death following ischemia–reperfusion in a model of stroke. Although DJ-1 is present in the heart, its role there is currently unclear. We sought to investigate whether mitochondrial DJ-1 may protect the heart against cell death from acute IRI by preventing mitochondrial dysfunction. Overexpression of DJ-1 in HL-1 cardiac cells conferred the following beneficial effects: reduced cell death following simulated IRI (30.4±4.7% with DJ-1 versus 52.9±4.7% in control; n=5, P<0.05); delayed mitochondrial permeability transition pore (MPTP) opening (a critical mediator of cell death) (260±33 s with DJ-1 versus 121±12 s in control; n=6, P<0.05); and induction of mitochondrial elongation (81.3±2.5% with DJ-1 versus 62.0±2.8% in control; n=6 cells, P<0.05). These beneficial effects of DJ-1 were absent in cells expressing the non-functional DJ-1L166P and DJ-1Cys106A mutants. Adult mice devoid of DJ-1 (KO) were found to be more susceptible to cell death from in vivo IRI with larger myocardial infarct sizes (50.9±3.5% DJ-1 KO versus 41.1±2.5% in DJ-1 WT; n≥7, P<0.05) and resistant to cardioprotection by ischemic preconditioning. DJ-1 KO hearts showed increased mitochondrial fragmentation on electron microscopy, although there were no differences in calcium-induced MPTP opening, mitochondrial respiratory function or myocardial ATP levels. We demonstrate that loss of DJ-1 protects the heart from acute IRI cell death by preventing mitochondrial dysfunction. We propose that DJ-1 may represent a novel therapeutic target for cardioprotection.  相似文献   

9.
10.
Toll-like receptor 4 (TLR4) activation has been implicated in the pathogenesis of myocardial ischemia/reperfusion (I/R) injury. The activated TLR4 is capable of activating a variety of proinflammatory mediators, such as tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Valsartan as a kind of Angiotensin II type 1 receptor blockers is gradually used for the treatment of ischemic heart disease depending on its anti-inflammation function. Therefore, we hypothesized that valsartan protects against myocardial I/R injury by suppressing TLR4 activation. We constructed the rat model of myocardial I/R injury. The rats were pretreated with valsartan for 2 weeks, and then subjected to 30 min ischemia and 2 h reperfusion. TLR4 and Nuclear factor kappa-B (NF-κB) levels were detected by quantitative real-time PCR and western blot. In order to evaluate myocardial damage, the myocardial infarct size, histopathologic changes, and the release of myocardial enzymes, proinflammation cytokines and Angiotensin II were analyzed by triphenyl tetrazolium chloride (TTC) staining, light microscopy, and enzyme-linked immunosorbent assay (ELISA), respectively. Valsartan preconditioning inhibited TLR4 and NF-κB expressions concomitant with an improvement in myocardial injury, such as smaller infarct size, fewer release of myocardial enzymes, and proinflammation mediators. These findings suggest that valsartan plays a pivotal role in the protective effects on myocardial I/R injury. This protection mechanism is possibly due to its anti-inflammation function via TLR4/NF-κB signaling pathway.  相似文献   

11.
It has been reported that pretreatment of rats with lipopolysaccharide (LPS) increases myocardial functional recovery in ischemia/reperfusion (I/R) hearts. However, the mechanisms by which LPS induces cardioprotection against I/R injury have not been fully elucidated. In this study, we pretreated rats with LPS (1.0 mg/kg) 24 h before they were subjected to I/R injury, and then examined the roles of heat shock protein-70 (HSP70) and nucleus factor-κB (NF-κB) in LPS-induced cardioprotection. We observed that pretreatment with low-dose LPS resulted in significantly increased levels of HSP70 in the myocardium, which could dramatically inhibit NF-κB translocation and reduce degradation of inhibitory κB. Inhibition of NF-κB, in turn, attenuated release of inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-1β, and IL-6) and reduced apoptosis of myocardium and infarct area following I/R injury. Moreover, HSP70 could ameliorate oxidative stress following I/R injury. To further investigate whether increase of HSP70 might be responsible for protection of the myocardium against I/R injury, we co-administered the HSP70 inhibitor, quercetin, with LPS before I/R injury. We found that LPS-induced cardioprotection was attenuated by co-administration with quercetin. Herein, we concluded that increased levels of HSP70 through LPS pretreatment led to inhibition of NF-κB activity in the myocardium after I/R injury. Our results indicated that LPS-induced cardioprotection was mediated partly through inhibition of NF-κB via increase of HSP70, and LPS pretreatment could provide a means of reducing myocardial I/R injury.  相似文献   

12.
Background

Testicular injury is one of the most serious problems associated with diabetes mellitus. The present study aimed to compare the effects of two different doses of nobiletin and analyze its mechanisms of action against diabetes-induced testicular impairment in rats.

Methods and results

Streptozotocin injection was used to induce diabetes. Diabetic rats received nobiletin orally at 10 or 25 mg/kg daily for 30 days. Diabetic rats displayed significant elevations in glucose, glycosylated hemoglobin (HbA1c), Homeostatic Model of Insulin Resistance (HOMA-IR), and pro-inflammatory cytokines, while the serum levels of insulin, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were significantly reduced. Histological changes to positivity for caspase-3 and decreased androgen receptors (AR) immunoexpression were observed in diabetic rats. Both doses of nobiletin improved hyperglycemia, reduced pro-inflammatory cytokines, and augmented insulin, testosterone, LH, and FSH levels. LH and FSH receptors and cytochrome P450 17 α-hydroxylase (CYP17A1) were markedly downregulated in terms of both gene and protein expression in testicular tissues of the diabetic group, effects that were markedly ameliorated with both doses of nobiletin. In addition, both doses significantly reduced lipid peroxidation and caspase-3 immunoexpression and improved the activity of the antioxidant enzymes and AR in testicular tissues of the diabetic group.

Conclusion

Both nobiletin doses showed protective effects against diabetes-induced testicular injury by reducing oxidative stress, hyperglycemia, inflammation, and caspase-3 and upregulating the hypophysis–gonadal axis and AR. The high dose of nobiletin was more effective than the lower one.

  相似文献   

13.
Acute lung injury (ALI) and its more serious form, respiratory distress syndrome (ARDS), are considered as an acute and severe inflammatory process existing in lungs, and still remain high mortality rates. Tripartite motif 8 (TRIM8) contains an N-terminal RING finger, which is followed by two B-boxes and a coiled-coil domain, belonging to the TRIM/RBCC family and playing significant role in meditating inflammation, oxidative stress and apoptosis. In the study, we investigated the role of TRIM8 in ALI induced by lipopolysaccharide (LPS) and the underlying molecular mechanisms. The in vitro results indicated that LPS time-dependently enhanced TRIM8 expression in lung epithelial cells. Suppressing TRIM8 markedly ameliorated LPS-elicited inflammatory response, as evidenced by the down-regulated mRNA levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in cells mainly through inactivating nuclear factor-kappa B (NF-κB) signaling pathway; however, over-expressing TRIM8 markedly promoted inflammation in LPS-challenged cells. In addition, LPS-induced oxidative stress was accelerated by TRIM8 over-expression, while being alleviated by TRIM8 knockdown by regulating Nrf2 signaling. Importantly, TRIM8 could negatively meditate AMP-activated protein kinase-α (AMPKα) activation to modulate LPS-triggered inflammatory response and ROS generation in vitro. Additionally, our in vivo findings suggested that TRIM8 knockdown effectively attenuated LPS-induced lung injury nu decrease of lung wet/dry (W/T) ratio, protein concentrations, neutrophil infiltration, myeloperoxidase (MPO) activity, reactive oxygen species (ROS) production and superoxide dismutase (SOD) depletion. Meanwhile, the loss of TRIM8 markedly lessened IL-1β, IL-6 and TNF-α expression in lung tissues of LPS-challenged mice, and reduced NF-κB phosphorylation. Furthermore, TRIM8 knockdown evidently improved nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions in lung of LPS-treated mice. The anti-inflammation and anti-oxidant role of TRIM8-silence might be associated with AMPKα phosphorylation. Together, our study firstly provided a support that TRIM8 knockdown effectively protected LPS-induced ALI against inflammation and oxidative stress largely dependent on the promotion of AMPKα pathway.  相似文献   

14.
PKC-β inhibitor Ruboxistaurin (RBX or LY333531) can be used to reverse diabetic microvascular complication. However, it has not been previously established whether RBX can protect against ischemia/reperfusion (I/R) injury of cardiac microvessels in diabetic rats. STZ-induced diabetic rats were randomized into four groups and underwent I/R procedures. Cardiac barrier function and the region of cardiac microvascular lesion were examined. Cell monolayer barrier function was detected in cultured cardiac microvascular endothelial cells (CMECs) subjected to simulated I/R (SI/R). PKC-β siRNA was transfected into CMECs to silence PKC-β. Apoptosis Index of CMECs was detected by TUNEL assay and phosphor-LIMK2 protein expression was examined by Western blot analysis. RBX and insulin administration significantly reduced the cardiac microvascular lesion region and Apoptosis Index of endothelial cells (all P < 0.05 vs. no-treatment group). RBX decreased phosphor-LIMK2 expression (P < 0.05 vs. no-treatment group). RBX pretreatment and transfection with PKC-β siRNA induced a rapid barrier enhancement in CMECs monolayer as detected by increased transendothelial electrical resistance (TER) and decreased FITC-dextran clearance (all P < 0.05 vs. no-treatment group). Meanwhile, RBX pretreatment and transfection with PKC-β siRNA significantly decreased TUNEL positive CMECs and phosphor-LIMK2 expression in cultured CMECs (all P < 0.05 vs. no-treatment group). RBX pretreatment reduced F-actin/G-actin in cultured CMECs, reproducing the same effect as PKC-β siRNA. These data indicate that PKC-β inhibitor (RBX) may be helpful in attenuating the risk of severe cardiac microvascular I/R injury in diabetic rats partly due to its maintenance of endothelial barrier function and anti-apoptotic effect.  相似文献   

15.
MicroRNAs are extensively involved in the pathogenesis of major cardiovascular diseases by suppressing target gene expression. Recent studies have reported that microRNA-22 (miR-22) may be implicated in ischemia–reperfusion (I/R) induced myocardial injury. However, the specific function of miR-22 in myocardial I/R injury is far from clear nowadays. The present study was designed to determine the role of miR-22 in myocardial I/R injury and investigate the underlying cardio-protective mechanism. The rat myocardial I/R injury model was induced by occluding the left anterior descending coronary artery for 30 min followed by 12 h reperfusion. As predicted, adenovirus-mediated miR-22 overexpression markedly reduced the release of creatine kinase and lactate dehydrogenase, infarct size and cardiomyocytes apoptosis. Moreover, CREB binding protein (CBP) as a potential miR-22 target by bioinformatics was significantly inhibited after miR-22 transfection. We also found that p53 acetylation activity, pro-apoptotic related genes Bax and p21 levels were all decreased associated with the down-regulation of CBP. In conclusion, our data demonstrate that miR-22 could inhibit apoptosis of cardiomyocytes through one of its targets, CBP. Thus, miR-22 may constitute a new therapeutic target for the prevention of myocardial I/R injury.  相似文献   

16.
We determined the contribution of calcium-independent phospholipase A(2)β (iPLA(2)β) to lung metastasis development following breast cancer injection into wild-type (WT) and iPLA(2)β-knockout (iPLA(2)β-KO) mice. WT and iPLA(2)β-KO mice were injected in the mammary pad with 200,000 E0771 breast cancer cells. There was no difference in primary tumor size between WT and iPLA(2)β-KO mice at 27 days postinjection. However, we observed an 11-fold greater number of breast cancer cells in the lungs of WT mice compared with iPLA(2)β-KO animals (P < 0.05). Isolated WT lung endothelial cells demonstrated a significant increase in platelet-activating factor (PAF) production when stimulated with thrombin [1 IU/ml, 10 min, 4,330 ± 555 vs. 15,227 ± 1,043 disintegrations per minute (dpm), P < 0.01] or TNF-α (10 ng/ml, 2 h, 16,532 ± 538 dpm, P < 0.01). Adherence of E0771 cells to WT endothelial cells was increased by thrombin (4.8 ± 0.3% vs. 70.9 ± 6.3, P < 0.01) or TNF-α (60.5 ± 4.3, P < 0.01). These responses were blocked by pretreatment with the iPLA(2)β-selective inhibitor (S)-bromoenol lactone and absent in lung endothelial cells from iPLA(2)β-KO mice. These data indicate that endothelial cell iPLA(2)β is responsible for PAF production and adherence of E0771 cells and may play a role in cancer cell migration to distal locations.  相似文献   

17.
All four adenosine receptor subtypes have been shown to play a role in cardioprotection, and there is evidence that all four subtypes may be expressed in cardiomyocytes. There is also increasing evidence that optimal adenosine cardioprotection requires the activation of more than one receptor subtype. The purpose of this study was to determine whether adenosine A(2A) and/or A(2B) receptors modulate adenosine A(1) receptor-mediated cardioprotection. Isolated perfused hearts of wild-type (WT), A(2A) knockout (KO), and A(2B)KO mice, perfused at constant pressure and constant heart rate, underwent 30 min of global ischemia and 60 min of reperfusion. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA; 200 nM) was administrated 10 min before ischemia and for the first 10 min of reperfusion. Treatment with CHA significantly improved postischemic left ventricular developed pressure (74 ± 4% vs. 44 ± 4% of preischemic left ventricular developed pressure at 60 min of reperfusion) and reduced infarct size (30 ± 2% with CHA vs. 52 ± 5% in control) in WT hearts, effects that were blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (100 nM). Treatments with the A(2A) receptor agonist CGS-21680 (200 nM) and the A(2B) agonist BAY 60-6583 (200 nM) did not exert any beneficial effects. Deletion of adenosine A(2A) or A(2B) receptor subtypes did not alter ischemia-reperfusion injury, but CHA failed to exert a cardioprotective effect in hearts of mice from either KO group. These findings indicate that both adenosine A(2A) and A(2B) receptors are required for adenosine A(1) receptor-mediated cardioprotection, implicating a role for interactions among receptor subtypes.  相似文献   

18.
Excessive absorption of products of dietary fat digestion leads to type 2 diabetes and other obesity-related disorders. Mice deficient in the group 1B phospholipase A2 (Pla2g1b), a gut digestive enzyme, are protected against diet-induced obesity and type 2 diabetes without displaying dietary lipid malabsorption. This study tested the hypothesis that inhibition of Pla2g1b protects against diet-induced hyperlipidemia. Results showed that the Pla2g1b−/− mice had decreased plasma triglyceride and cholesterol levels compared with Pla2g1b+/+ mice subsequent to feeding a high-fat, high-carbohydrate (hypercaloric) diet. These differences were evident before differences in body weight gains were observed. Injection of Poloxamer 407 to inhibit lipolysis revealed decreased VLDL production in Pla2g1b−/− mice. Supplementation with lysophosphatidylcholine, the product of Pla2g1b hydrolysis, restored VLDL production rates in Pla2g1b−/− mice and further elevated VLDL production in Pla2g1b+/+ mice. The Pla2g1b−/− mice also displayed decreased postprandial lipidemia compared with Pla2g1b+/+ mice. These results show that, in addition to dietary fatty acids, gut-derived lysophospholipids derived from Pla2g1b hydrolysis of dietary and biliary phospholipids also promote hepatic VLDL production. Thus, the inhibition of lysophospholipid absorption via Pla2g1b inactivation may prove beneficial against diet-induced hyperlipidemia in addition to the protection against obesity and diabetes.  相似文献   

19.
Adenosine serves a number of important physiological roles in the body, which is the most widely studied endogenous signal molecules, and the underlying mechanism responsible for such cardioprotection needs more understood, particularly adenosine postconditioning in myocardial ischemia/reperfusion model. In the present study we performed to investigate the inflammatory response of adenosine postconditioning on the cardiac TNF-α expression and NF-κB activation. Eighteen rats were randomly divided into 4 groups: (1) Group A: sham operation group; (2) Group B: ischemia/reperfusion group; (3) Group C: postconditioned groups, four cycles of 30-s reperfusion/30-s occlusion were started immediately after release of the index ischemia (n = 6 each); (4) Group D: adenosine was infused 40 μg kg−1 min−1 5 min before the onset of reperfusion without subsequent postconditioning cycles. Hearts were removed at the termination of experiments, which were preserved in frozen tube and stored at −70°C refrigerator for Measurement of malonyldialdehyde (MDA), activities of the NF-κB and TNF-α and IL-10 assay. The results of this study indicate that adenosine postconditioning immediately after myocardial ischemia can reduce the myocardial tissue MDA generation and infarct size, improve cardiac function, which is coincidence with conventional postconditioning. The study also found that modulation of NF-κB activation and accordingly reduces inflammatory factor TNF-α expression may be a molecular mechanism of adenosine down-regulation of inflammatory cytokine production.  相似文献   

20.
A series of 2-hydrazinyladenosine derivatives was synthesized and investigated in radioligand binding studies for their affinity at the adenosine receptor subtypes with the goal to obtain potent and A2AAR selective agonists and to explore the structure–activity relationships of this class of compounds at A2AAR. Modifications included introduction of a second sugar moiety at position 2 of adenosine to form new bis-sugar nucleosides and/or modifications of the 2-position linker in different ways. The performed modifications were found to produce compounds with relatively high A2AAR affinity and very high selectivity toward A2AAR. The most potent bis-sugar nucleoside was obtained with the d-galactose derivative 16 which exhibited a Ki value of 329 nM at A2AAR with marked selectivity against the other AR subtypes. In another set of compounds, compound 3 was modified via replacement of its cyclic structure with mono- and disubstituted phenyl moieties and the resulting hydrazones 1014 were found to have low nanomolar affinity for A2AAR. In addition to 3, compounds 10, 11 and 13 have been identified as the most potent compounds in the present series with Ki values of 16.1, 24.4, and 12.0 nM, respectively, at rat A2AAR. Species differences were tested and found to exist in different rates. Functional properties of the most potent compounds 10, 11, 13 and 16 were assessed showing that the compounds acted as agonists at A2AAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号