首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Purpose: The Fourth Universal Definition of Myocardial Infarction (MI) has highlighted the different pathophysiological mechanisms that may lead to ischaemic and non-ischaemic myocardial injury and has emphasised that the diagnosis of myocardial infarction requires the presence of acute myocardial ischaemia in the setting of acute myocardial injury. This case based review intends to illustrate basic principles on how to apply this new, revised definition in clinical practice.

Methods and Results: The distinction between different types of MIs (type 1 or type 2) and the delineation of MI from acute non-ischaemic myocardial injury may be challenging in individual patients, which is illustrated by presenting and discussing real-life routine cases.

Conclusions: Type 1?MI is a consequence of coronary plaque rupture or erosion with intracoronary thrombus formation that is usually apparent on coronary angiography. Plausible triggering mechanisms causing myocardial oxygen supply/demand mismatch must be identified for the diagnosis of type 2?MI and its treatment should focus initially on management of the underlying disease attributable to acute myocardial ischaemia.  相似文献   

2.
The development of ambulatory electrocardiographic recorders and analysers and the application of transesophageal echocardiography in the mid-1980''s enabled investigators to quantify and describe the occurrence of silent as well as symptomatic ischemia in the perioperative period. Several technical advances which have recently occurred in ECG monitoring include the use of miniaturized digital computing equipment to store and analyze data. In addition, real time ST-segment analysis has become widely available on multicomponent monitors in both the operating room and intensive care units. The incidence of perioperative myocardial ischemia depends on the patient population, the surgical procedure, and the monitoring technique used. Several studies in the early 1990''s have shown that cardiac morbidity in patients undergoing major, noncardiac surgery is best predicted by postoperative myocardial ischemia, rather than tradition preoperative clinical predictors. Long duration postoperative ischemia may be the factor most significantly associated with adverse cardiac outcome. Postoperative pain, physiological and emotional stress may all combine to cause tachycardia, hypertension, increase in cardiac output, and fluid shifts which, in high risk patients, might result in subendocardial ischemia and eventual myocardial infarction. If postoperative myocardial ischemia is the cause of late postoperative myocardial infarction in patients undergoing non-cardiac surgery, then treatment of postoperative myocardial ischemia should reduce morbidity. In addition, reducing pain and stress and avoiding postoperative hypoxemia might prevent postoperative myocardial ischemia and minimize the need for extensive preoperative cardiac evaluation.  相似文献   

3.
Myocardial infarction (MI) is a severe coronary artery disease resulted from substantial and sustained ischemia. Abnormal upregulation of calcium and integrin binding protein 1 (CIB1) has been found in several cardiovascular diseases. In this study, we established a mouse model of MI by permanent ligation of the left anterior descending coronary artery. CIB1 was upregulated in the heart of MI mice. Notably, CIB1 knockdown by intramuscular injection of lentivirus-mediated short hairpin RNA (shRNA) targeting Cib1 improved cardiac function and attenuated myocardial hypertrophy and infarct area in MI mice. MI-induced upregulation of α-SMA, vimentin, Collagen I, and Collagen III, which resulted in collagen production and myocardial fibrosis, were regressed by CIB1 silencing. In vitro, cardiac fibroblasts (CFs) isolated from mice were subjected to angiotensin II (Ang II) treatment. Inhibition of CIB1 downregulated the expression of α-SMA, vimentin, Collagen I, and Collagen III in Ang II-treated CFs. Moreover, CIB1 knockdown inhibited Ang II-induced phosphorylation of PI3K-p85 and Akt in CFs. The effect of CIB1 knockdown on Ang II-induced cellular injury was comparable to that of LY294002, a specific inhibitor of the PI3K/Akt pathway. We demonstrated that MI-induced cardiac hypertrophy, myocardial fibrosis, and cardiac dysfunction might be attributed to the upregulation of CIB1 in MI mice. Downregulation of CIB1 alleviated myocardial fibrosis and cardiac dysfunction by decreasing the expression of α-SMA, vimentin, Collagen I, and Collagen III via inhibiting the PI3K/Akt pathway. Therefore, CIB1 may be a potential target for MI treatment.  相似文献   

4.
Apoptosis and fibrosis play a vital role in myocardial infarction (MI) induced tissue injury. Although microRNAs have been the focus of many studies on cardiac apoptosis and fibrosis in MI, the detailed effects of miR-26a is needed to further understood. The present study demonstrated that miR-26a was downregulated in ST-elevation MI (STEMI) patients and oxygen-glucose deprivation (OGD)-treated H9c2 cells. Downregulation of miR-26a was closely correlated with the increased expression of creatine kinase, creatine kinase-MB and troponin I in STEMI patients. Further analysis identified that ataxia–telangiectasia mutated (ATM) was a target gene for miR-26a based on a bioinformatics analysis. miR-26a overexpression effectively reduced ATM expression, apoptosis, and apoptosis-related proteins in OGD-treated H9c2 cells. In a mouse model of MI, the expression of miR-26a was significantly decreased in the infarct zone of the heart, whereas apoptosis and ATM expression were increased. miR-26a overexpression effectively reduced ATM expression and cardiac apoptosis at Day 1 after MI. Furthermore, we demonstrated that overexpression of miR-26a improved cardiac function and reduced cardiac fibrosis by the reduced expression of collagen type I and connective tissue growth factor (CTGF) in mice at Day 14 after MI. Overexpression of miR-26a or ATM knockdown decreased collagen I and CTGF expression in cultured OGD-treated cardiomyocytes. Taken together, these data demonstrate a prominent role for miR-26a in linking ATM expression to ischemia-induced apoptosis and fibrosis, key features of MI progression. miR-26a reduced MI development by affecting ATM expression and could be targeted in the treatment of MI.  相似文献   

5.
Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin‐10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow‐derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen‐glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10‐MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10‐MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10‐MSC treatment. IL10 overexpression and MSC may exert a synergistic anti‐inflammatory effect to alleviate cardiac injury after MI.  相似文献   

6.
Myocardial ischemia–reperfusion (MI/R) injury is a crucial cause for mortality throughout the world. Recent studies indicated that melatonin might exert profound cardio-protective effect in MI/R injury. However, the underlying mechanisms are not completely understood. In the current study, we aimed to explore the potential effect of melatonin in the pathological process of MI/R. Both in vivo MI/R model and in vitro H9c2 cell line simulated I/R (SIR) model were applied with or without melatonin supplementation. We found that Sirtuin3 (Sirt3) expression and activity were markedly decreased under MI/R and SIR conditions. Melatonin treatment significantly increased myocardial Sirt3 expression, and alleviated MI/R-induced cardiac morphology changes and cardiac dysfunction, as well as myocardial apoptosis level. In addition, DHE and JC-1 staining results demonstrated that melatonin reduced mitochondrial reactive oxygen species (ROS) generation and restored ATP production after SIR injury via elevating Sirt3 expression. By using siRNA targeting Sirt3, we confirmed that the beneficial effects of melatonin were dependent on Sirt3, which in turn deacetylated and activated manganese superoxide dismutase (MnSOD). Collectively, the current study demonstrated the protective effect of melatonin against MI/R injury via alleviating myocardial oxidative stress. Moreover, these beneficial effects were associated with the deacetylation modification of Sirt3 on MnSOD.  相似文献   

7.
The present study determined the dynamic change of adiponectin (APN, a cardioprotective adipokine), its receptor expression, and their impact upon myocardial ischemia/reperfusion (MI/R) injury during type 1 diabetes mellitus (T1DM) progression, and involved underlying mechanisms. Diabetic state was induced in mice via multiple intraperitoneal injections of low-dose streptozotocin. The dynamic change of plasma APN concentration and cardiac APN receptor-1 and -2 (AdipoR1/2) expression were assessed immediately after diabetes onset (0 wk) and 1, 3, 5, and 7 wk thereafter. Indicators of MI/R injury (infarct size, apoptosis, and LDH release) were determined at 0, 1, and 7 wk of DM duration. The effect of APN on MI/R injury was determined in mice subjected to different diabetic durations. Plasma APN levels (total and HMW form) increased, whereas cardiac AdipoR1 expression decreased early after T1DM onset. With T1DM progression, APN levels were reduced and cardiac AdipoR1 expression increased. MI/R injury was exacerbated with T1DM progression in a time-dependent manner. Administration of globular APN (gAD) failed to attenuate MI/R injury in 1-wk T1DM mice, while an AMP-activated protein kinase (AMPK) activator (AICAR) reduced MI/R injury. However, administration of gAD (and AICAR) reduced infarct size and cardiomyocyte apoptosis in 7-wk T1DM mice. In conclusion, our results demonstrate a dynamic dysfunction of APN/AdipoR1 during T1DM progression. Reduced cardiac AdipoR1 expression and APN concentration may be responsible for increased I/R injury susceptibility at early and late T1DM stages, respectively. Interventions bolstering AdipoR1 expression during early T1DM stages and APN supplementation during advanced T1DM stages may potentially reduce the myocardial ischemic injury in diabetic patients.  相似文献   

8.
Innate immune and inflammatory responses mediated by Toll like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. This study examined the role of TLR3 in myocardial injury induced by two models, namely, myocardial infarction (MI) and I/R. First, we examined the role of TLR3 in MI. TLR3 deficient (TLR3−/−) and wild type (WT) mice were subjected to MI induced by permanent ligation of the left anterior descending (LAD) coronary artery for 21 days. Cardiac function was measured by echocardiography. Next, we examined whether TLR3 contributes to myocardial I/R injury. TLR3−/− and WT mice were subjected to myocardial ischemia (45 min) followed by reperfusion for up to 3 days. Cardiac function and myocardial infarct size were examined. We also examined the effect of TLR3 deficiency on I/R-induced myocardial apoptosis and inflammatory cytokine production. TLR3−/− mice showed significant attenuation of cardiac dysfunction after MI or I/R. Myocardial infarct size and myocardial apoptosis induced by I/R injury were significantly attenuated in TLR3−/− mice. TLR3 deficiency increases B-cell lymphoma 2 (BCL2) levels and attenuates I/R-increased Fas, Fas ligand or CD95L (FasL), Fas-Associated protein with Death Domain (FADD), Bax and Bak levels in the myocardium. TLR3 deficiency also attenuates I/R-induced myocardial nuclear factor KappaB (NF-κB) binding activity, Tumor necrosis factor alpha (TNF-α) and Interleukin-1 beta (IL-1β) production as well as I/R-induced infiltration of neutrophils and macrophages into the myocardium. TLR3 plays an important role in myocardial injury induced by MI or I/R. The mechanisms involve activation of apoptotic signaling and NF-κB binding activity. Modulation of TLR3 may be an effective approach for ameliorating heart injury in heart attack patients.  相似文献   

9.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI.  相似文献   

10.
心肌梗死是围术期最严重的并发症之一,所以减少围术期心肌梗死的风险对于围术期麻醉十分重要。大量实验研究证明,吸入麻醉药预处理可以有效减轻心肌的缺血/再灌注损伤,减少心肌梗死范围,促进心脏功能的恢复。麻醉药预处理是一个复杂的过程,这一过程触发了两个不同的时相。第一,简称为早期预处理(E预处理),包括心肌细胞内有保护作用的酶的激活;第二,称为晚期预处理(L预处理),依赖于新的心肌保护蛋白的从头合成。虽然早期预处理和晚期预处理对心肌细胞的影响是挥发性麻醉药心脏保护作用的关键,但他们对冠状动脉内皮细胞的影响也很重要,这一机制可能改善了冠状动脉手术患者的长期预后。挥发性麻醉药,对改善围术期有心肌梗死风险的非心脏手术患者的预后,尚没有得到有明确意义的证实。  相似文献   

11.
Transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is safe and may improve cardiac function and structural remodelling in patients following myocardial infarction (MI). Cardiovascular cell differentiation and paracrine effects to promote endogenous cardiac regeneration, neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility, may contribute to MSC-based cardiac repair following MI. However, current evidence indicates that the efficacy of MSC transplantation was unsatisfactory, due to the poor viability and massive death of the engrafted MSCs in the infarcted myocardium. MicroRNAs are short endogenous, conserved, non-coding RNAs and important regulators involved in numerous facets of cardiac pathophysiologic processes. There is an obvious involvement of microRNAs in almost every facet of putative repair mechanisms of MSC-based therapy in MI, such as stem cell differentiation, neovascularization, apoptosis, cardiac remodelling, cardiac contractility and arrhythmias, and others. It is proposed that therapeutic modulation of individual cardiovascular microRNA of MSCs, either mimicking or antagonizing microRNA actions, will hopefully enhance MSC therapeutic efficacy. In addition, MSCs may be manipulated to enhance functional microRNA expression or to inhibit aberrant microRNA levels in a paracrine manner. We hypothesize that microRNAs may be used as novel regulators in MSC-based therapy in MI and MSC transplantation by microRNA regulation may represent promising therapeutic strategy for MI patients in the future.  相似文献   

12.
Acute or chronic myocardial infarction (MI) are cardiovascular events resulting in high morbidity and mortality. Establishing the pathological mechanisms at work during MI and developing effective therapeutic approaches requires methodology to reproducibly simulate the clinical incidence and reflect the pathophysiological changes associated with MI. Here, we describe a surgical method to induce MI in mouse models that can be used for short-term ischemia-reperfusion (I/R) injury as well as permanent ligation. The major advantage of this method is to facilitate location of the left anterior descending artery (LAD) to allow for accurate ligation of this artery to induce ischemia in the left ventricle of the mouse heart. Accurate positioning of the ligature on the LAD increases reproducibility of infarct size and thus produces more reliable results. Greater precision in placement of the ligature will improve the standard surgical approaches to simulate MI in mice, thus reducing the number of experimental animals necessary for statistically relevant studies and improving our understanding of the mechanisms producing cardiac dysfunction following MI. This mouse model of MI is also useful for the preclinical testing of treatments targeting myocardial damage following MI.  相似文献   

13.
Although the measurement of cardiac troponin I (cTnI) and T (cTnT) has now become the cornerstone for diagnosing cardiac injury, both ischemic and non-ischemic, recent evidence has become available that many patients display extra-cardiac causes of cTn elevations and carry a considerably enhanced risk of future mortality. The current literature data suggests that cTn elevations may be equally common in patients with cardiac and extra-cardiac diseases. Among the latter cohort of patients, the leading extra-cardiac diseases which may be responsible for either cTnI or cTnT elevations include infectious diseases/sepsis, pulmonary disorders, renal failure, malignancy, as well as gastrointestinal, neurological and musculoskeletal diseases. What also emerges rather clearly from the current literature data, is that the risk of dying for extra-cardiac diseases is higher (i.e., between two to three-fold) in patients with extra-cardiac cTn elevations than in those with cardiac pathologies, and that the most frequent cause of death would then be infections/sepsis, followed by malignancy, respiratory disorders, myocardial infarction, gastrointestinal and neurological diseases, heart failure, stroke, cardiac arrhythmias, renal failure, psychiatric, metabolic, urogenital and musculoskeletal disorders. These figures would lead to conclude that there is a considerable risk that the underlying pathology causing cardiac injury and cTn elevation would then become the cause of death in these patients. This important evidence shall lead the way to defining appropriate and effective strategies for managing patients with extra-cardiac cTn elevations, so that their risk of future death could be prevented or limited.  相似文献   

14.
After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.  相似文献   

15.
Excessive immune‐mediated inflammatory reaction plays a deleterious role in ventricular remodelling after myocardial infarction (MI). Interleukin (IL)‐38 is a newly characterized cytokine of the IL‐1 family and has been reported to exert a protective effect in some autoimmune diseases. However, its role in cardiac remodelling post‐MI remains unknown. In this study, we found that the expression of IL‐38 was increased in infarcted heart after MI induced in C57BL/6 mice by permanent ligation of the left anterior descending artery. In addition, our data showed that ventricular remodelling after MI was significantly ameliorated after recombinant IL‐38 injection in mice. This amelioration was demonstrated by better cardiac function, restricted inflammatory response, attenuated myocardial injury and decreased myocardial fibrosis. Our results in vitro revealed that IL‐38 affects the phenotype of dendritic cells (DCs) and IL‐38 plus troponin I (TNI)‐treated tolerogenic DCs dampened adaptive immune response when co‐cultured with CD4+T cells. In conclusion, IL‐38 plays a protective effect in ventricular remodelling post‐MI, one possibility by influencing DCs to attenuate inflammatory response. Therefore, targeting IL‐38 may hold a new therapeutic potential in treating MI.  相似文献   

16.
17.
18.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

19.
高峰  肖暖  李平  王绿娅  柳克晔 《生物磁学》2014,(8):1475-1478,1474
目的:探讨急性心肌梗死患者冠脉搭桥(CABG)术前中性粒细胞.淋巴细胞比率(NLR)与围术期心肌损伤的关系,为,临床CABG围术期心肌保护提供参考依据。方法:选取2012年1月至2012年6月于首都医科大学附属北京安贞医院因急性心肌梗死接受冠脉搭桥手术(CABG)患者210例,收集术前血常规及术后肌钙蛋白I(cTnI)?Life酸激酶同工酶(CK-MB),计算NLR;采用四分位法根据NLR水平将患者分为四组,比较各组cTnI及CK—MB峰值,多元逐步回归分析NLR与cTnI及CK-MB峰值的相关性。结果:随着NLR水平升高,高血压病史和射血分数〈50%患者比例逐渐增多;白细胞计数、术后CK-MB及cTnI峰值、术后血肌酐值均逐渐增加;多元逐步回归分析显示,NLR、WBC分别与cTnI峰值呈正相关(r=0.526,r=0.186,P〈0.05)。结论:术前NLR、WBC与cTnI峰值呈正相关,NLR可能是反应急性心肌梗死患者冠脉搭桥围术期心肌损伤的良好标志物。  相似文献   

20.
The midterm effects of cardiac telocytes (CTs) transplantation on myocardial infarction (MI) and the cellular mechanisms involved in the beneficial effects of CTs transplantation are not understood. In the present study, we have revealed that transplantation of CTs was able to significantly decrease the infarct size and improved cardiac function 14 weeks after MI. It has established that CT transplantation exerted a protective effect on the myocardium and this was maintained for at least 14 weeks. The cellular mechanism behind this beneficial effect on MI was partially attributed to increased cardiac angiogenesis, improved reconstruction of the CT network and decreased myocardial fibrosis. These combined effects decreased the infarct size, improved the reconstruction of the LV and enhanced myocardial function in MI. Our findings suggest that CTs could be considered as a potential cell source for therapeutic use to improve cardiac repair and function following MI, used either alone or in tandem with stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号