首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five early-phase ammonia fungi (EP fungi) – Amblyosporium botrytis, Ascobolus denudatus, Peziza moravecii, Pseudombrophila petrakii, Coprinopsis phlyctidospora, and Tephrocybe tesquorum, and one late-phase ammonia fungus (LP fungus), Hebeloma vinosophyllum – were co-cultured on malt extract-yeast extract agar media at pH 5.5, 7.0, 8.0, and 9.0. The co-cultures among the early-stage EP fungi Amblyosporium botrytis, Ascobolus denudatus, Peziza moravecii, and Pseudombrophila petrakii, generally did not inhibit or accelerate the reproductive structure formation of the opposed fungi. Among the EP fungi, Am. botrytis, As. denudatus, and Pe. moravecii intermingled with each other. The late-stage EP fungus T. tesquorum inhibited the growth of other EP fungi. Another late-stage EP fungus, C. phlyctidospora, showed ability to invade other EP fungi, but it did not deeply invade into the territories of early-stage EP fungi. The LP fungus H. vinosophyllum tended to accelerate basidioma formation of C. phlyctidospora at pH 5.5 and 9.0. H. vinosophyllum formed the highest numbers of basidomata at pH 5.5. These results show that successive occurrence of ammonia fungi is caused by the interspecific interactions among ammonia fungi as well as by the physiological characteristic of each fungus associated with conditions of its inhabiting soils, such as pH and nitrogen concentration.  相似文献   

2.
We studied the effects of the timing of urea treatment on the succession of ammonia fungi. In two evergreen Castanopsis cuspidata forests and in one deciduous Quercus serrata forest, we applied 343g urea to 25 and 15 plots of 0.5m2, respectively, at three different times of the year. Ten of the early-phase (EP) species, considered to be saprotrophic, and 6 of the late-phase (LP) ones, considered ectomycorrhizal, fruited. In both phases, the commencement, peak, and cessation of fruiting took place simultaneously among all the plots treated at the same time. The fruiting occurred in summer and autumn. Quantity and size of the fruit bodies was larger in the LP than in the EP species. Fruiting of EP species was affected by the treatment time and that of LP species by interaction of the treatment time and vegetation type. EP was short and occurred as one period, whereas LP was long and occurred as two or more fruiting seasons. We found that species composition, dominant species, and degree of its dominance in fruiting of the ammonia fungi are predictable for different treatment times of the year and different vegetation types.  相似文献   

3.
Summary Ectomycorrhizal short roots, mycelia, rhizomorphs and mats from conifer soil were examined in relation to their hydrophobic properties. In some cases connected fruit bodies were included in the study. Mycorrhizal soils gathered from the forest and/or colonized in a laboratory rhizoscope were studied, as were mycelia in pure culture. Most forest-derived species were hydrophobic. The drought-resistant Cenococcum geophilum and the more ruderal and moisture-dependent Thelephora terrestris were both strongly hydrophilic. The hydrophobic mycelium seemed solely responsible for the water repellence properties, and adjacent soil and plant debris remained unaffected and hydrophilic. In hydrophobic fungi, mat formation was induced in the rhizoscope by hyphal contact with alder litter leaves. This stimulating effect was not found when the leaves were covered by water or when fresh, green alder leaves were used. Thelephora terrestris did not form such mats in vitro and spread sparsely in air pockets as well as in the adjacent water film. The possibility is discussed that many mycorrhizal fungi in the forest may partly control their soil environment via aeration created by their hydrophobia.  相似文献   

4.
《Trends in microbiology》2023,31(5):439-443
Ectomycorrhizal (ECM) fungi serve key functions in forest ecosystems by supplying water and nutrients to tree hosts, yet mutualistic plant–fungi interactions are jeopardised by environmental alterations. Here, we discuss the great potential and current limitations of landscape genomics in investigating signatures of local adaptation in natural populations of ECM fungi.  相似文献   

5.
Four ectomycorrhizal fungi were tested for their ability to grow (i.e., mycelial mat radial extension and fungal biomass) on nutrient media either supplemented with ammonium-nitrogen or nitrate-nitrogen or in the absence of an inorganic nitrogen source.Pisolithus tinctorius, Cenococcum geophilum andThelephora terrestris exhibited greater growth on ammonium-nitrogen.Suillus granulatus grew better on the nitrate-nitrogen nutrient medium. Regardless of inorganic nitrogen form preference (i.e., ammonium-nitrogen or nitrate-nitrogen), all 4 species showed some growth on each of the 3 nutrient media. Growth rate maxima varied by fungal species as well as by inorganic nitrogen source. Maximum growth rate forT. terrestris exceeded rates exhibited by the other 3 fungi by 2–5 times.  相似文献   

6.
Ectomycorrhizal fungi exhibit high diversity even in small monoculture forests. Roughly 20 to 35 species typically occupy such sites. Explanations for this diversity can be based on resource partitioning, disturbance, competition, or interaction with other organisms. Mycorrhizal fungi compete for two general classes of resources: host-derived carbon and soil or detritus derived mineral nutrients. Both types of resources are arrayed in space (e.g., soil depth, distance from tree) and time (e.g., season, host successional series). Some species seem to be partitioned in space and time at these scales, but the question of how widespread these patterns are remains largely unanswered. Mineral resources are distributed in discrete substrates in soil, litter, and within other soil microorganisms; the biochemical diversity exhibited by fungi may translate into differences in access to these resources among species. Small-scale natural disturbances that sever roots, mix soil horizons and litter layers, or change local pH and nutrient availability, are likely to create additional habitats for ectomycorrhizal fungi. Evidence from fruiting patterns and differences in colonization strategies suggest that such disturbances may be important for establishment of some species. Competitive replacement networks among species have the theoretical potential to increase diversity. The frequency of species replacements, observed co-infections of ectomycorrhizal fungi on single host roots, and high rates of rootlet turn-over all suggest that competition is important, but whether it plays a creative role in maintaining diversity remains to be demonstrated. Other organisms could be important in the maintenance of diversity, if they effect competition among mycorrhizal fungi. Bacteria and soil invertebrates are the most likely groups for such interactions. Technological advances in root observation and PCR methods for indentification of mycorrhizae make many of these theories testable.  相似文献   

7.
The effect of nitrogen source (nitrate, ammonia and/or amino acids) on cell composition and amino acid uptake rates was examined. Substantial levels of free amino acids accumulated intracellularly with all nitrogen sources used. Ammonia accumulated only when provided in the medium. The presence of ammonia in the medium decreased the intracellular accumulation of free amino acids, especially arginine. Amino acid uptake rates were suppressed by the presence of excess nitrogen, especially ammonia. However, the suppression of uptake did not show any particular relation to the nitrogenous cell composition.  相似文献   

8.
Ammonia is an abundant fermentation product in the forestomachs of ruminants and the intestine of other species. Uptake as NH3 or NH4+ should modulate cytosolic pH and sodium-proton exchange via Na+/H+ exchanger (NHE). Transport rates of Na+, NH4+, and NH3 across the isolated rumen epithelium were studied at various luminal ammonia concentrations and pH values using the Ussing chamber method. The patch-clamp technique was used to identify an uptake route for NH4+. The data show that luminal ammonia inhibits electroneutral Na transport at pH 7.4 and abolishes it at 30 mM (P < 0.05). In contrast, at pH 6.4, ammonia stimulates Na transport (P < 0.05). Flux data reveal that at pH 6.4, approximately 70% of ammonia is absorbed in the form of NH4+, whereas at pH 7.4, uptake of NH3 exceeds that of NH4+ by a factor of approximately four. The patch-clamp data show a quinidine-sensitive permeability for NH4+ and K+ but not Na+. Conductance was 135 +/- 12 pS in symmetrical NH(4)Cl solution (130 mM). Permeability was modulated by the concentration of permeant ions, with P(K) > P(NH4) at high and P(NH4) > P(K) at lower external concentrations. Joint application of both ions led to anomalous mole fraction effects. In conclusion, the luminal pH determines the predominant form of ammonia absorption from the rumen and the effect of ammonia on electroneutral Na transport. Protons that enter the cytosol through potassium channels in the form of NH4+ stimulate and nonionic diffusion of NH3 blocks NHE, thus contributing to sodium transport and regulation of pH.  相似文献   

9.
The mechanisms involved in ammonia uptake by rat liver cells and the effects of changes in extracellular pH have been investigated in vivo and in vitro. When NH4Cl solutions were infused in the hepatic portal vein, ammonia uptake by the liver was practically quantitative up to about 1 mM in afferent blood. Ammonia transfer into hepatocytes was extremely rapid: for 2 mM ammonia in external medium, the intracellular concentration reached 5 mM within 10 s. Comparatively, [14C]methylamine influx was slower and the cell concentrations did not reach a steady-state level, probably in relation with diffusion into the acidic lysosomal compartment. Intracellular accumulation of ammonia was dependent on the delta pH across the plasma membrane: the distribution ratio (internal/external) was about 1 for an external pH of 6.8 and about 5 at pH 8. Urea synthesis was maximal at physiological pH and markedly declined at pH 7.05. This inhibition was not affected by manipulation of bicarbonate concentrations in the medium, down to 10 mM. Additional inhibition of ureogenesis by 100 microM acetazolamide was also observed, particularly at low concentrations of bicarbonate in the medium. Inhibition of ureogenesis when extracellular pH is decreased could be ascribed to a lower availability of the NH3 form. Assuming that NH3 readily equilibrates between the various compartments, the availability of free ammonia for carbamoyl-phosphate synthesis could be tightly dependent on extracellular pH.  相似文献   

10.
? Ectomycorrhizal (ECM) fungi obtain both mineral and simple organic nutrients from soil and transport these to plant roots. Natural abundance of stable isotopes ((15) N and (13) C) in fruit bodies and potential enzymatic activities of ECM root tips provide insights into mineral nutrition of these mutualistic partners. ? By combining rDNA sequence analysis with enzymatic and stable isotope assays of root tips, we hypothesized that phylogenetic affinities of ECM fungi are more important than ECM exploration type, soil horizon and host plant in explaining the differences in mineral nutrition of trees in an African lowland rainforest. ? Ectomycorrhizal fungal species belonging to extraradical mycelium-rich morphotypes generally displayed the strongest potential activities of degradation enzymes, except for laccase. The signature of (15) N was determined by the ECM fungal lineage, but not by the exploration type. ? Potential enzymatic activities of root tips were unrelated to (15) N signature of ECM root tip. The lack of correlation suggests that these methods address different aspects in plant nutrient uptake. Stable isotope analysis of root tips could provide an additional indirect assessment of fungal and plant nutrition that enables enhancement of taxonomic coverage and control for soil depth and internal nitrogen cycling in fungal tissues.  相似文献   

11.
The phytopathogenic fungus Colletotrichum gloeosporioides produces one pectate lyase (PL) that is a key virulence factor in disease development. During growth of C. gloeosporioides, Colletotrichum acutatum, and Colletotrichum coccodes in acidified yeast extract medium, the fungus secreted ammonia and increased the medium pH. Ammonia accumulation and the consequent pH change increased as a function of initial pH and buffer capacity of the medium. PL secretion by C. gloeosporioides correspondingly increased as the pH of the medium increased. The C. gloeosporioides pelB gene-disrupted mutant was able to increase ammonia accumulation and pH of the media similarly to the wild-type isolate. C. gloeosporioides in avocado, C. coccodes in tomato, and C. acutatum in apple showed ammonia accumulation in the infected area where pH increased to 7.5 to 8 and PL activity is optima. In nonhost interactions where C. gloeosporioides was inoculated in apples, the addition of ammonia-releasing compounds significantly enhanced pathogenicity to levels similar to those caused by the compatible C. acutatum-apple interaction. The results therefore suggest the importance of ammonia secretion as a virulence factor, enhancing environmental pH and pathogenicity of the Colletotrichum species.  相似文献   

12.
Production of ammonia by urea-grown Chlorella ellipsoidea was investigated. Ammonia was produced during the stationary growth phase in cultures with urea as sole nitrogen source and glucose as supplementary carbon source. Ammonia was produced only in medium containing excess urea and limiting amounts of glucose. Ammonia production was accompanied by increase in pH. In cultures with nitrate as sole nitrogen source and glucose as supplementary carbon source, growth and pH changes were similar to those in urea-glucose medium, but no ammonia was detected. Cultures grown in urea-acetate medium were similar to those grown in urea medium without additional organic carbon source. No ammonia was produced under these circumstances and growth was significantly lower than that achieved in glucose-supplemented cultures. C. ellipsoidea evidently produces an enzyme or enzyme system which forms ammonia from urea. This organism was reportedly urease-free because previous workers did not detect ammonia formation from urea. Our findings indicate that special circumstances are required to produce detectable amounts of ammonia from urea. These findings are in agreement with a recent report of urea-splitting, cofactor-requiring enzyme in cell-free extracts of Chlorella.  相似文献   

13.
Autotrophic ammonia oxidation at low pH through urea hydrolysis.   总被引:1,自引:0,他引:1  
Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.  相似文献   

14.
Ammonia inhibition of microbial activity in biological wastewater treatment process, studied by using a dehydrogenase assay with specific inhibitor of nitrification, strongly correlated with the total amount of ammonia and the pH of wastewater. Total ammonia concentration, as well as free ammonia, is an important factor in ammonia inhibition and should be included to obtain an accurate measurement. Nitrifying bacteria were more sensitive than heterotrophic bacteria when the ammonia concentration went over above 3000 mg l–1.  相似文献   

15.
In the humid tropics, legumes are harvested and surface applied as mulch or incorporated as green manure. Studies on N dynamics and budgets from these systems report unaccounted losses of N. Ammonia volatilization may account for a significant percentage of these unexplained N deficits. The main objectives of this study were to: 1) determine the rate and amount of ammonia volatilization from organic amendments, both incorporated (green manure) and unincorporated (mulch), 2) compare ammonia volatilization of organic amendments on both acid (unlimed) and limed soils, and 3) correlate quality, i.e. polyphenolic and lignin concentration and carbon-to-nitrogen ratio, of the organic amendments with ammonia volatilization and net N mineralization. In an incubation experiment, ammonia volatilization losses and net N mineralization were measured from fresh leaflets of 10 legumes over a three-week period. Ammonia volatilization losses for the 10 species ranged from 3.4 to 11.8% of the total N applied in the organic amendment. Lignin content was negatively correlated to ammonia volatilization. Ammonia volatilized from mulches but not green manures, on both unlimed and limed soils, suggesting that ammonia volatilization is a surface phenomenon and not affected by soil pH. Net N mineralization was affected by species and soil pH, but was unaffected by placement (green manure or mulch). For the farmer in low-input agriculture where N tends to be limiting, volatilization losses of N from legume mulch systems could be on the same order of magnitude as crop removal.  相似文献   

16.
Questions: How do arbuscular mycorrhiza and earthworms affect the structure and diversity of a ruderal plant community? Is the establishment success of newcomer plants enhanced by these soil organisms and their interactions? Methods: We grew a native ruderal plant community composed of different functional groups (grasses, legumes and forbs) in the presence and absence of arbuscular mycorrhizal fungi (AMF) and endogeic earthworms in mesocosms. We introduced seeds of five, mainly exotic, plant species from the same functional groups after a disturbance simulating mowing. The effects of the soil organisms on the native ruderal plant community and seedling establishment of the newcomer plants were assessed. Results: After disturbance, the total above‐ground regrowth of the native plant community was not affected by the soil organisms. However, AMF increased plant diversity and shoot biomass of forbs, but decreased shoot biomass of grasses of the native plant community. Earthworms led to a reduction in total root biomass. Establishment of the introduced newcomer plants increased in the presence of AMF and earthworms. Especially, seedling establishment of the introduced non‐native legume Lupinus polyphyllus and the native forb Plantago lanceolata was promoted in the presence of AMF and earthworms, respectively. The endogeic earthworms gained more weight in the presence of AMF and led to increased extraradical AMF hyphal length in soil. However, earthworms did not seem to modify the effect of AMF on the plant community. Conclusion: The present study shows the importance of mutualistic soil organisms in mediating the establishment success of newcomer plants in a native plant community. Mutualistic soil organisms lead to changes in the structure and diversity of the native plant community and might promote newcomer plants, including exotic species.  相似文献   

17.
Ammonia often has been reported to inhibit cell growth. The aqueous ammonia equilibrium between the un-ionized form (NH3) and the ammonium ion (NH4 +) depends on the pH of the solution. Extensive studies in batch and continuous cultivation by varying pH and total ammonia concentration were carried out to investigate whether a kinetic model describing growth inhibition by ammonia has to be based on the total ammonia concentration, or the concentration of NH3. A significant relationship between the specific growth rate and death rate, respectively, and the NH3 concentration but not the total ammonia concentration, was detected. An adaptation of the cells to high ammonia levels was not observed. Based on these results a new kinetic model for ammonia mediated growth inhibition is suggested. For high density cultivation it is recommended to control the pH at the lower limit of the growth optimum to keep the NH3 level low.  相似文献   

18.
Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis   总被引:6,自引:3,他引:3       下载免费PDF全文
Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.  相似文献   

19.
Brain edema and the consequent increase in intracranial pressure and brain herniation are major complications of acute liver failure (fulminant hepatic failure) and a major cause of death in this condition. Ammonia has been strongly implicated as an important factor, and astrocyte swelling appears to be primarily responsible for the edema. Ammonia is known to cause cell swelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter (NKCC1) has been shown to be involved in cell swelling in several neurological disorders. We therefore examined the effect of ammonia on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to ammonia (NH(4)Cl; 5 mm), and NKCC activity was measured. Ammonia increased NKCC activity at 24 h. Inhibition of this activity by bumetanide diminished ammonia-induced astrocyte swelling. Ammonia also increased total as well as phosphorylated NKCC1. Treatment with cyclohexamide, a potent inhibitor of protein synthesis, diminished NKCC1 protein expression and NKCC activity. Since ammonia is known to induce oxidative/nitrosative stress, and antioxidants and nitric-oxide synthase inhibition diminish astrocyte swelling, we also examined whether ammonia caused oxidation and/or nitration of NKCC1. Cultures exposed to ammonia increased the state of oxidation and nitration of NKCC1, whereas the antioxidants N-nitro-l-arginine methyl ester and uric acid all significantly diminished NKCC activity. These agents also reduced phosphorylated NKCC1 expression. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by ammonia and that such activation appears to be mediated by NKCC1 abundance as well as by its oxidation/nitration and phosphorylation.  相似文献   

20.
The Assimilation of Nitrogen from Ammonium Salts and Nitrate by Fungi   总被引:2,自引:0,他引:2  
  1. The assimilation of inorganic nitrogen by Scopulariopsis brevicaulisand some physiologically similar species has been studied. Theirfailure to assimilate completely from ammonium sulphate hasbeen shown to be due to the fall in pH of the medium inducedby the initial uptake of ammonia.
  2. Complete assimilation ofammonia takes place in the presenceof the neutral salts ofeach of thirteen organic acids investigated.The organic acidsact primarily through their buffering effectwhich preventsor slows down the fall in pH. They are not specificallyrequiredfor ammonia assimilation by these fungi and can beeffectivelyreplaced by certain inorganic buffers.
  3. The influence of severalexternal factors on the rate of assimilationof ammonia, nitrate,and nitrite has been studied in S. brevicaulis.In correspondingconditions the mycelium assimilates ammoniamore rapidly thannitrate over a wide range of conditions.
  4. Ammonia, even invery low concentration, completely suppressesnitrate assimilationwhen both sources of nitrogen are presenttogether. Nitrite,however, is assimilated simultaneously withammonia. It is thereforeconcluded that ammonia blocks the reductionof nitrate to nitriteby the fungus.
  5. The suppression of nitrate assimilation inthe presence of ammoniais common to many mould fungi besidesS. brevicaulis, and isbelieved to have adaptive significancein natural habitats.
  6. The nitrate-reducing and assimilatingsystem is formed, evenwhen S. brevicaulis is grown in completeabsence of nitrate(ammonia medium with organic acid). It comesinto action rapidlywhen the inhibiting effect of ammonia isremoved. Similarly,nitrate-grown mycelium is capable of assimilatingammonia atmaximal rate without any adaptive lag.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号