首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modification of chemoreceptors, specifically methylation and demethylation of glutamates catalyzed by methyltransferase CheR and methylesterase CheB. The methylesterase is a two-domain response regulator in which phosphorylation of the regulatory domain enhances activity of the catalytic domain. In Escherichia coli and Salmonella typhimurium, a crucial determinant of efficient methylation and demethylation is a specific pentapeptide sequence at the chemoreceptor carboxyl terminus, a position distant from sites of enzymatic action. Each enzyme binds pentapeptide, but the site of binding has been located only for CheR. Here we locate the pentapeptide-binding site on CheB by assessing catalytic activity and pentapeptide binding of CheB fragments, protection of CheB from proteolysis by pentapeptide, and interference with pentapeptide-CheB interaction by a CheB segment. The results place the binding site near the hinge between regulatory and catalytic domains, in a segment spanning the carboxyl-terminal end of the regulatory domain and the beginning of the linker that stretches to the catalytic domain. This location is quite different from the catalytic domain location of the pentapeptide-binding site on CheR and is likely to reflect the rather different ways in which pentapeptide binding enhances enzymatic action for the methyltransferase and the methylesterase.  相似文献   

2.
The RapA and RapB proteins are aspartyl phosphate phosphatases that specifically dephosphorylate the Spo0F approximately P intermediate response regulator of the phosphorelay signal transduction system for sporulation initiation in Bacillus subtilis. The approximately 48-kDa His-tag derivative proteins were purified by metal affinity chromatography, and their molecular and biochemical characteristics were studied. RapA and RapB were found to be dimers in solution. Enzymatic activity was strongly dependent upon maintaining reducing conditions during purification and storage. RapA phosphatase activity on Spo0F approximately P is inhibited in vivo by a pentapeptide generated from the phrA gene. Native gel assays demonstrated that the RapA dimer forms a stable complex with two molecules of Spo0F approximately P or with its PhrA pentapeptide inhibitor. The pentapeptide was shown to displace Spo0F approximately P from a preformed complex with RapA. The structural organization of Rap phosphatases in tetratricopeptide repeats provides insights on the mechanisms of RapA interaction with its substrate and its inhibitor.  相似文献   

3.
4.
The synthesis of 8-thiocyano-ATP (CNS8-ATP) is described. At 37 degrees C the ATP analogue inactivates Na,K-ATPase, hexokinase, and pyruvate kinase. In all three cases, inactivation can be prevented by the addition of ATP, thus indicating that CNS8-ATP is recognized within the ATP binding site of the above enzymes. Incubation of the inactivated enzymes with dithiothreitol restores the catalytic activities. Therefore, it is likely that in these enzymes a mixed disulfide (E-S-S8-ATP) is formed between a sulfhydryl in the ATP binding site (E-SH) and the ATP analogue: [formula: see text] From the pseudo-first-order inactivation kinetics, a KD = 2.7 microM with k2 = 0.142 min-1 is calculated for the hexokinase and a KD = 40 microM with k2 = 0.347 min-1 is calculated for the pyruvate kinase interactions with the ATP analogue. At 4 degrees C, Na,K-ATPase recognizes CNS8-ATP with a KD = 8.3 microM. At 37 degrees C, the enzyme becomes inactivated by the ATP analogue in a biphasic manner. Inactivation results in the incorporation of [alpha-32P]8-CNS8-ATP into the catalytic alpha-subunit of the enzyme. Limited tryptic digestion in the presence of 150 mM KCl results in the formation of a radioactive peptide of Mr = 56,000, known to bear the purine binding domain of Na,K-ATPase. The results described in this article verify CNS8-ATP as a sulfhydryl-reactive ATP analogue and characterize this new ATP analogue as a useful tool for structure/function studies on ATP-recognizing enzymes.  相似文献   

5.
6.
7.
Dialynas DP  Shao LE  Hinojosa AG  Yu J 《Cytokine》1999,11(12):985-995
It is believed that haematopoiesis is regulated by both positive and negative signals derived from the marrow microenvironment, which includes macrophages. The identity and mechanism of action of the proteins mediating negative regulation is an area of active investigation. We report here the identification and initial characterization of a novel suppressor of early haematopoietic progenitors, designated NRH (for Negative Regulator of Haematopoiesis), isolated from the recently established human macrophage line 2MAC. The mechanism of NRH suppression appears to involve a marked decrease in the cycling of early progenitor cells. NRH activity was shown to be reversible and to correspond to an acidic, heparin-binding glycoprotein with a molecular weight of approximately 20 000 daltons ( approximately 20 kDa). By exploiting lectin specificity, hydrophobic interaction, and heparin affinity, we have developed a procedure for the rapid isolation of highly purified NRH from 2MAC-conditioned medium. By a number of functional and biochemical criteria, NRH appears to represent a novel macrophage-derived negative regulator of haematopoiesis which may have future application in certain clinical settings as a chemoprotectant of primitive haematopoietic cells.  相似文献   

8.
Two-component regulatory systems that utilize a multistep phosphorelay mechanism often involve a histidine-containing phosphotransfer (HPt) domain. These HPt domains serve an essential role as histidine-phosphorylated protein intermediates during phosphoryl transfer from one response regulator domain to another. In Saccharomyces cerevisiae, the YPD1 protein facilitates phosphoryl transfer from a hybrid sensor kinase, SLN1, to two distinct response regulator proteins, SSK1 and SKN7. Because the phosphorylation state largely determines the functional state of response regulator proteins, we have carried out a comparative study of the phosphorylated lifetimes of the three response regulator domains associated with SLN1, SSK1, and SKN7 (R1, R2, and R3, respectively). The isolated regulatory domains exhibited phosphorylated lifetimes within the range previously observed for other response regulator domains (i.e., several minutes to several hours). However, in the presence of YPD1, we found that the half-life of phosphorylated SSK1-R2 was dramatically extended (almost 200-fold longer than in the absence of YPD1). This stabilization effect was specific for SSK1-R2 and was not observed for SLN1-R1 or SKN7-R3. Our findings suggest a mechanism by which SSK1 is maintained in its phosphorylated state under normal physiological conditions and demonstrate an unprecedented regulatory role for an HPt domain in a phosphorelay signaling system.  相似文献   

9.
A method for the preparation of oligonucleotides containing the mutagenic base 4-O-ethylthymine is described for the first time. Use of p-nitrophenylethyl type base protecting groups together with phosphitetriester solid-phase methodology makes possible the rapid and efficient preparation of oligonucleotides bearing 4-O-ethylthymine, while standard base protecting groups are not compatible with the presence of this base. Possible applications of this methodology are discussed.  相似文献   

10.
Leinamycin (1) is a Streptomyces-derived natural product that displays nanomolar IC50 values against human cancer cell lines. In the work described here, we report the synthesis and characterization of a small leinamycin analogue 19 that closely resembles the ‘upper-right quadrant’ of the natural product, consisting of an alicyclic 1,2-dithiolan-3-one 1-oxide heterocycle connected to an alkene by a two-carbon linker. The results indicate that this small analogue contains the core set of functional groups required to enable thiol-triggered generation of both redox active polysulfides and an episulfonium ion intermediate via the complex reaction cascade first seen in the natural product leinamycin. The small leinamycin analogue 19 caused thiol-triggered oxidative DNA strand cleavage in a manner similar to the natural product, but did not alkyate duplex DNA effectively. This highlights the central role of the 18-membered macrocycle of leinamycin in driving efficient DNA alkylation by the natural product.  相似文献   

11.
EnvZ is a sensory histidine kinase in Escherichia coli to regulate the phosphorylation of OmpR, its cognate response regulator, required for the expression of genes for outer membrane porin proteins. Here, we re-examined the recent paper Mattison and Kenney, in which the authors reported that phosphorylated OmpR (OmpR-P) is unable to bind to EnvZ, thus casting doubts on the role of the EnvZ phosphatase activity in vivo. Using an identical method, the Kd value for the interaction of the fluorescein-labelled OmpR (Fl-OmpR) with EnvZc was determined to be 1.96 +/- 0.28 micro M. We demonstrated that OmpR-P as well as OmpR inhibited the interaction of Fl-OmpR with EnvZc. Their 50% inhibitory concentrations were 1.09 +/- 0.25 micro M and 0.89 +/- 0.14 micro M, respectively, under the conditions used. The interaction between His-10-OmpR and EnvZc was also inhibited almost equally with OmpR-P and OmpR. Fluorescein labelling of OmpR was highly heterogeneous as detected by mass spectrometry, even though it slightly affected the OmpR phosphorylation (kinase) and the dephosphorylation of OmpR-P (phosphatase), indicating that EnvZc is able to interact with Fl-OmpR or Fl-OmpR-P as well as with OmpR or OmpR-P as a substrate. We demonstrated that OmpR-P is able to interact with EnvZc with a similar affinity to OmpR and serves as an effective substrate for the EnvZ phosphatase. These findings support the hypothesis that osmotic signals regulate the level of the cellular concentration of OmpR-P by modulating the ratio of kinase to phosphatase activity of the bifunctional enzymatic activities of EnvZ.  相似文献   

12.
Chitosan a natural based polymer is non-toxic, biocompatible and biodegradable. Chemical modification of chitosan to generate new bifunctional materials and finally would bring new properties depending on the nature of the group introduced. In our present study, we prepared phosphorylated chitosan (P-chitosan) by using H3PO4/P2O5/Et3PO4/hexanol method. From our present method, we got high yield and high degree of substitution (DS). The prepared P-chitosan (DS-1.18) was characterized by FT IR, 13C NMR, 31P NMR, elemental, XRD, TGA, DTA and SEM studies. After the phosphorylation, the solubility of the polymer was improved. The P-chitosan showed less thermal stability and crystallinity than the chitosan. It was due to the phosphorylation.  相似文献   

13.
Described herein is the synthesis and characterization of a tetranucleotide, 5'-dC-phosphonate-T-amide-T-ophosphonate-dC (III), in which the C-T and T-C steps contain a phosphonate backbone bond and T-T is a peptide nucleic acid dimer unit (neutral backbone). The 5'- and 3'-OH groups of the tetramer can be further derivatized and, thus, the compound is a potential building block for longer oligonucleotides which will contain alternating backbone modifications at designated positions. The synthesis involved first the preparation of two hybrid peptide-deoxyribose dinucleotides, CT-CO (I) and N-CT (II) (C and T are nucleobases; CO and N are carboxylic and amino terminal, respectively); each is linked through a phosphonate linkage. A condensation reaction between the two dimers, followed by deprotection, resulted in the formation of a peptide linkage to give the desired tetramer III. The reaction conditions used are mild to afford products in moderate to excellent yields. The DNA-PNA-DNA tetramer, d(CTTC), is a substrate for T4 kinase but fails to give a ligation product, even though NMR shows weak interactions between the tetramer III with its complementary sequence, d(GAAG).  相似文献   

14.
Spirochetes have a unique cell structure: These bacteria have internal periplasmic flagella subterminally attached at each cell end. How spirochetes coordinate the rotation of the periplasmic flagella for chemotaxis is poorly understood. In other bacteria, modulation of flagellar rotation is essential for chemotaxis, and phosphorylation-dephosphorylation of the response regulator CheY plays a key role in regulating this rotary motion. The genome of the Lyme disease spirochete Borrelia burgdorferi contains multiple homologues of chemotaxis genes, including three copies of cheY, referred to as cheY1, cheY2, and cheY3. To investigate the function of these genes, we targeted them separately or in combination by allelic exchange mutagenesis. Whereas wild-type cells ran, paused (flexed), and reversed, cells of all single, double, and triple mutants that contained an inactivated cheY3 gene constantly ran. Capillary tube chemotaxis assays indicated that only those strains with a mutation in cheY3 were deficient in chemotaxis, and cheY3 complementation restored chemotactic ability. In vitro phosphorylation assays indicated that CheY3 was more efficiently phosphorylated by CheA2 than by CheA1, and the CheY3-P intermediate generated was considerably more stable than the CheY-P proteins found in most other bacteria. The results point toward CheY3 being the key response regulator essential for chemotaxis in B. burgdorferi. In addition, the stability of CheY3-P may be critical for coordination of the rotation of the periplasmic flagella.  相似文献   

15.
A novel acromelic acid analogue containing a phenyl group possessing two different types of azido functional groups, of which one is the aromatic N3 acting as a photoaffinity group to bind to a target protein by photoirradiation and the other is alkyl N3 group which survives photolysis acting as a detecting group through the Staudinger-Bertozzi reaction to identify the ligated product, was designed and synthesized as a radioisotope-free biochemical probe potentially for studies on kainoid receptors.  相似文献   

16.
The BvgAS system controls the expression of most virulence factors in Bordetella pertussis. Recently, we identified an orthologous system in the related human pathogen Bordetella holmesii. However, while we found that the orthologous histidine kinases BvgS could be functionally exchanged between the two species, the B. holmesii response regulator BvgA(BH) could not substitute for its B. pertussis counterpart in vivo and, accordingly, was not able to bind to B. pertussis virulence promoters in vitro. Here we show that a hybrid response regulator consisting of the B. pertussis derived DNA-binding output domain of BvgA(BP) combined with the B. holmesii receiver domain binds to BvgA(BP) regulated virulence promoters of B. pertussis in vitro and is functional in B. pertussis in vivo. This shows that the inability of BvgA(BH) to complement BvgA(BP) in B. pertussis is due to the small number of sequence variations present in its output domain. However, by mutation analysis we show that four amino acid exchanges present in the helix-turn-helix motif of BvgA(BH) as compared to BvgA(BP) are not the only reason for its inability to substitute for BvgA(BP) but additional mutations present in the output domain must play a role.  相似文献   

17.
A redox-active nucleobase analogue of a nucleotide was synthesized and incorporated into DNA using phosphoramidite chemistry. An analogue-containing oligonucleotide in the absence of a reducing reagent formed a stable duplex with a substantially higher melting temperature compared to that of a standard DNA duplex of the same length.  相似文献   

18.
1,1,4,4-Butanetetracarboxylic acid (BTCA) is evaluated as an analogue for the metal binding site in dipeptides of gamma-carboxyglutamic acid (Gla). Molecular modeling suggests that the four carboxylic acid groups in BTCA can assume a similar conformation to the four gamma-carboxylic acid groups in GlaGla and thus provides the impetus for the synthesis and metal binding determinations. BTCA is synthesized via the tert.-butyl ester and characterized via NMR, mass spectroscopy, and elemental composition. Equilibrium binding constants with protons, Ca(II) and Mg(II) are determined via pH and Ca(II) ion-selective electrode titrations and are found to be similar to those for GlaGla peptides with blocked termini.  相似文献   

19.
Two cyclic peptides, cyclo29,34[Dpr29, Lys34(DTPA-Glu)]-CCK8 (1) and cyclo29,34[Tyr27(SO3H), Dpr29, Lys34(DTPA-Glu)]-CCK8 (2), bearing the chelating moiety DTPA-Glu covalently bound to the Lys side chain have been synthesized by solid-phase methodology. The presence in compound 2 of many acidic functions characteristic of the chelating agent increases the lability of the sulfate group on the Tyr side chain. This finding suggests that prolonged acid treatments should be avoided during the preparation of such peptides. Sulfation of cyclo29,34[Dpr29, Lys34(DTPA-Glu)]-CCK8 was performed using a pyridine-SO3 complex as reagent. This reaction has been found to be the most suitable synthetic strategy for obtaining compound 2 in good yield. Cyclo29,34[Tyr27(SO3H), Dpr29, Lys34(DTPA-Glu)]-CCK8 is a new promising CCK8 analogue, able to coordinate radioactive isotopes of metal ions such as 111In(III), and to bind, in a selective way, the CCKA-R receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号