首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indole has many, diverse roles in bacterial signaling. It regulates the transition from exponential to stationary phase, it is involved in the control of plasmid stability, and it influences biofilm formation, virulence, and stress responses (including antibiotic resistance). Its role is not restricted to bacteria, and recently it has been shown to include mutually beneficial signaling between enteric bacteria and their mammalian hosts. In many respects indole behaves like the signaling component of a quorum-sensing system. Indole synthesized within the producer bacterium is exported into the surroundings where its accumulation is detected by sensitive cells. A view often repeated in the literature is that in Escherichia coli the AcrEF-TolC and Mtr transporter proteins are involved in the export and import, respectively, of indole. However, the evidence for their involvement is indirect, and it has been known for a long time that indole can pass directly through a lipid bilayer. We have combined in vivo and in vitro approaches to examine the relative importance of protein-mediated transport and direct passage across the E. coli membrane. We conclude that the movement of indole across the E. coli membrane under normal physiological conditions is independent of AcrEF-TolC and Mtr. Furthermore, direct observation of individual liposomes shows that indole can rapidly cross an E. coli lipid membrane without the aid of any proteinaceous transporter. These observations not only enhance our understanding of indole signaling in bacteria but also provide a simple explanation for the ability of indole to signal between biological kingdoms.  相似文献   

2.
Unspecific biological effects of chemically diverse solvents strikingly reveal the unifying motif of oxidant toxicity both in higher organisms and in aerobic bacteria. In a few spectacular cases, solvent metabolites with oxidant properties were demonstrated, which however cannot explain extrahepatic toxicity, e.g. in muscle and nerve cells. A common source of solvent-inducible oxidants, by contrast, is suggested to be located in mitochondria or, more general, in membranes where the respiratory chain operates. Orderly respiration depends on membrane integrity, which is invariably compromised by exposure to most solvents and many other lipophils. In rat mitochondria, toluene-induced membrane derangement has been directly implicated with superoxide production, resulting from autoxidation of the membrane-located respiratory redox-cycler ubisemiquinone. A related mechanism may occur in bacteria: Exposure of Escherichia coli to lipophils such as ethanol, tetralin, indole, chlorpromazine and procaine, or to heat shock, induces anti-oxidant proteins, which are reliable indicators of increased oxidant levels. Although many molecular details remain to be elucidated, this review documents that oxidant toxicity of lipophilic compounds is a common physiological phenomenon correlated with derangement of membranes where respiratory processes take place. Subjective consequences of acute oxidant injury are probably the hangover from alcohol and nicotine consumption, and the sudden death from recreational solvent abuse. Suggestions concerning oxidants as major contributors to ageing remain unchallenged.  相似文献   

3.
We developed an Escherichia coli expression system for overproduction of a highly toxic membrane protein that is impossible to overexpress by traditionally used approaches. The method is based on combination of the genetic modifications of a bicistronic expression plasmid, stabilization of a synthesized protein, and selection of a compatible expression host. This enabled us to enhance the expression level of a toxic membrane protein 30-50 times compared with expression in the native state and to obtain 3-5mg of a highly purified functionally active protein per liter of culture. We describe the method for the amplified expression of membrane proteins, using the Pseudomonas aeruginosa multidrug resistance protein, MexY, as an example. The amplified MexY was correctly folded in the cytoplasmic membrane of the E. coli without forming inclusion bodies. This method can be applicable to the large-scale expression of the other problematic membrane proteins that are otherwise extremely difficult to overproduce.  相似文献   

4.
5.
Protein exposure to oxidants such as HOCl leads to formation of methionine sulfoxide (MetSO) residues, which can be repaired by methionine sulfoxide reductase (Msr). A Helicobacter pylori msr strain was more sensitive to HOCl-mediated killing than the parent. Because of its abundance in H. pylori and its high methionine content, alkyl hydroperoxide reductase C (AhpC) was hypothesized to be prone to methionine oxidation. AhpC was expressed as a recombinant protein in Escherichia coli. AhpC activity was abolished by HOCl, while all six methionine residues of the enzyme were fully to partially oxidized. Upon incubation with a Msr repair mixture, AhpC activity was restored to nonoxidized levels and the MetSO residues were repaired to methionine, albeit to different degrees. The two most highly oxidized and then Msr-repaired methionine residues in AhpC, Met101 and Met133, were replaced with isoleucine residues by site-directed mutagenesis, either individually or together. E. coli cells expressing variant versions were more sensitive to t-butyl hydroperoxide than cells expressing native protein, and purified AhpC variant proteins had 5% to 39% of the native enzyme activity. Variant proteins were still able to oligomerize like the native version, and circular dichroism (CD) spectra of variant proteins revealed no significant change in AhpC conformation, indicating that the loss of activity in these variants was not related to major structural alterations. Our results suggest that both Met101 and Met133 residues are important for AhpC catalytic activity and that their integrity relies on the presence of a functional Msr.  相似文献   

6.
7.
This paper describes the overproduction and purification of the C-terminus polyhistidine-tagged outer membrane protein OprM, which is a part of the MexA-MexB-OprM active efflux system of Pseudomonas aeruginosa. Renaturation of the protein from inclusion bodies of Escherichia coli was achieved using guanidine-HCl as denaturing agent and n-octylpolyoxyethylene (C8POE) and n-octyltetraoxyethylene (C8E4) as nonionic detergents. The refolded protein was purified by ion-exchange and nickel-affinity chromatography. The final yield was 6 mg of pure histidine-tagged OprM per liter of E. coli culture. Renaturation was monitored by the effects of heating prior to SDS-PAGE, using a typical and exclusive property of outer membrane proteins. Immunoblotting revealed that the recombinant protein is addressed to the outer membrane of E. coli, after maturation by excision of its N-terminal signal sequence. Complementation of an oprM deletion mutant with the plasmid encoded histidine-tagged OprM protein restored antibiotic susceptibilities to wild-type levels, demonstrating functionality of recombinant OprM.  相似文献   

8.
A correlation between the synthesis and secretion of penicillin acylase (PA; EC 3.5.1.11) and the membrane phospholipid composition was observed in three E. coli strains. In cells with overproduction of PA, the phospholipid/protein ratio decreases, while the cardiolipin/phosphatidylglycerol ratio increases. The differences in the functioning of the electron transport system were revealed in cells with different levels of PA synthesis and secretion. The O2 consumption rate was 3 times lower in the cells with overproduction of PA than in those of less productive strains. On the contrary, membrane particles isolated from the cells of PA producers had no significant differences in the O2-reduction rate. The sensitivity of the strains to the inhibitor of terminal oxidases, sodium cyanide, and to the uncoupler of redox phosphorylation, chlorocarbonyl-phenylhydrazone, was different. Thus the E. coli cells with PA overproduction are characterized by significant changes in energetics and constructive metabolism. The interrelations between PA overproduction, phospholipid metabolism and the respiratory chain activity are discussed.  相似文献   

9.
In this study, expression of green fluorescence protein (GFP) on the external surface of Escherichia coli was achieved by construction of a fusion protein between Lpp-OmpA hybrid and a GFP variant, GFPmut2. The GFP was fused in frame to the carboxyl-terminus of Lpp-OmpA fusion previously shown to direct various other heterologous proteins to E. coli cell surface. Western blot analysis of membrane fractions identified the Lpp-OmpA-GFP fusion protein with the expected size (43 kDa). Immunofluorescence microscopy, immunoelectron microscopy, protease and extracellular pH sensitivity assays further confirmed that GFP is anchored on the outer membrane. The GFP displayed on the E. coli outer surface retained its fluorescence and was not susceptible to the indigenous outer membrane protease OmpT even though there are two putative OmpT proteolytic sites present in GFP. Optimization of the expression conditions was conducted using fluorometry, eliminating cumbersome immuno-labeling procedures. Surface-displayed GFP could be used in a variety of applications including screening of polypeptide libraries, development of live vaccines, construction of whole cell allosteric biosensors, and signal transduction studies.  相似文献   

10.
We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyR(Xp)). The oxyRR2(Xp) mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H(2)O(2) and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2(Xp) mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2(Xp) mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyR(Xp) mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris.  相似文献   

11.
In vivo analysis of integration of membrane proteins in Escherichia coli   总被引:13,自引:2,他引:11  
The in vivo process of membrane protein integration was studied by pulse-labelling Escherichia coli cells, and assessing integral anchoring of labelled proteins to the lipid bilayer based on their resistance to alkali extraction. To conduct this experiment, conditions for extracting E. coli proteins with alkali were refined, and the immunoprecipitation procedures were improved to allow effective detection of integral membrane proteins. Examination of pulse-labelled, integral membrane proteins, including lactose permease (LacY), SecY, cytochrome omicron subunit II and leader peptidase revealed that all were in the alkali-insoluble fraction, indicating that membrane integration of these proteins takes place rapidly in wild-type cells. However, when LacY was synthesized in excess from a multicopy plasmid, significant proportions were found in the alkali-soluble fraction, indicating that the solubility in alkali is not an intrinsic property of the protein, and suggesting that LacY depends on some limited cellular factor for membrane integration. The unintegrated species of LacY sedimented slowly through an alkaline sucrose gradient. The secY24 mutant cells accumulated higher proportions of unintegrated LacY molecules at lower levels of overproduction than the sec+ cells. LacY overproduction in wild-type cells was found to inhibit processing (export) of beta-lactamase but not of OmpA and OmpF. These results are interpreted to mean that integration of LacY depends on multiple cellular components, one of which is also involved in export of beta-lactamase.  相似文献   

12.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

13.
Catalase and superoxide dismutase in Escherichia coli   总被引:9,自引:0,他引:9  
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 30 min at 37 degrees C, they still failed to resist killing by neutrophils. Induction of the synthesis of catalase 9-fold by growth in the presence of phenazine methosulfate did not render E. coli resistant to killing by either neutrophils or by H2O2 itself. The lack of protection by intrabacterial catalase from killing by neutrophils could not be attributed to an impermeable bacterial membrane; the evolution of O2 from H2O2 was no less rapid in suspensions of E. coli than in lysates. The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface.  相似文献   

14.
We have previously identified two distinct NADH oxidases corresponding to H(2)O(2)-forming oxidase (Nox-1) and H(2)O-forming oxidase (Nox-2) induced in Streptococcus mutans. Sequence analyses indicated a strong similarity between Nox-1 and AhpF, the flavoprotein component of Salmonella typhimurium alkyl hydroperoxide reductase; an open reading frame upstream of nox-1 also showed homology to AhpC, the direct peroxide-reducing component of S. typhimurium alkyl hydroperoxide reductase. To determine their physiological functions in S. mutans, we constructed knockout mutants of Nox-1, Nox-2, and/or the AhpC homologue; we verified that Nox-2 plays an important role in energy metabolism through the regeneration of NAD(+) but Nox-1 contributes negligibly. The Nox-2 mutant exhibited greatly reduced aerobic growth on mannitol, whereas there was no significant effect of aerobiosis on the growth on mannitol of the other strains or growth on glucose of any of the strains. Although the Nox-2 mutants grew well on glucose aerobically, the end products of glucose fermentation by the Nox-2 mutant were substantially shifted to higher ratios of lactic acid to acetic acid compared with wild-type cells. The resistance to cumene hydroperoxide of Escherichia coli TA4315 (ahpCF-defective mutant) transformed with pAN119 containing both nox-1 and ahpC genes was not only restored but enhanced relative to that of E. coli K-12 (parent strain), indicating a clear function for Nox-1 as part of an alkyl hydroperoxide reductase system in vivo in combination with AhpC. Surprisingly, the Nox-1 and/or AhpC deficiency had no effect on the sensitivity of S. mutans to cumene hydroperoxide and H(2)O(2), implying that the existence of some other antioxidant system(s) independent of Nox-1 in S. mutans compensates for the deficiency.  相似文献   

15.
AhpC, oxidative stress and drug resistance in Mycobacterium tuberculosis   总被引:3,自引:0,他引:3  
The Mycobacterium tuberculosis AhpC is similar to a family of bacterial and eukaryotic antioxidant proteins with alkylhydroperoxidase (Ahp) and thioredoxin-dependent peroxidase (TPx) activities. AhpC expression is associated with resistance to the front-line antitubercular drug isoniazid in the naturally resistant organisms E. coli and M. smegmatis. We identified several isoniazid-resistant M. tuberculosis isolates with ahpC promoter mutations resulting in AhpC overexpression. These strains were more resistant to cumene hydroperoxide than were wild-type strains. However, these strains were unchanged in their sensitivity to isoniazid, refuting a role for AhpC in detoxification of this drug. All the isoniazid-resistant, AhpC-overexpressing strains were also deficient in activity of the mycobacterial catalase-peroxidase KatG. KatG, the only known catalase in M. tuberculosis, is required for activation of isoniazid. We propose that compensatory ahpC promoter mutations are selected from KatG-deficient, isoniazid-resistant M. tuberculosis during infections, to mitigate the added burden imposed by organic peroxides on these strains.  相似文献   

16.
A genetic system for directly synthesizing eukaryotic membrane proteins in Escherichia coli and assessing their ability to insert into the bacterial cytoplasmic membrane is described. The components of this system are the direct expression vector, pYZ4, and the mature beta-lactamase (BlaM) cassette plasmid, pYZ5, that can be used to generate translational fusions of BlaM to any synthesized membrane protein. The beta-subunit of sheep-kidney Na,K-ATPase (beta NKA), a class-II plasma membrane protein, was synthesized in E. coli using pYZ4, and BlaM was fused to a normally extracellular portion of it. The fusion protein conferred ampicillin resistance on individual host cells, indicating that the BlaM portion had been translocated to the bacterial periplasm, and that, by inference, the eukaryotic plasma-membrane protein can insert into the bacterial cytoplasmic membrane. A series of 31 beta NKA::BlaM fusion proteins was isolated and characterised to map the topology of the eukaryotic plasma membrane protein with respect to the bacterial cytoplasmic membrane. This analysis revealed that the organisation of the beta NKA in the E. coli cytoplasmic membrane was indistinguishable from that in its native plasma membrane.  相似文献   

17.
Autotransporters are the most common virulence factors secreted from Gram-negative pathogens. Until recently, autotransporter folding and outer membrane translocation were thought to be self-mediated events that did not require accessory factors. Here, we report that two variants of the autotransporter plasmid-encoded toxin are secreted by a lab strain of Escherichia coli. Biophysical analysis and cell-based toxicity assays demonstrated that only one of the two variants was in a folded, active conformation. The misfolded variant was not produced by a pathogenic strain of enteroaggregative E. coli and did not result from protein overproduction in the lab strain of E. coli. Our data suggest a host-specific factor is required for efficient folding of plasmid-encoded toxin.  相似文献   

18.
Toxin-antitoxin loci belonging to the yefM-yoeB family are located in the chromosome or in some plasmids of several bacteria. We cloned the yefM-yoeB locus of Streptococcus pneumoniae, and these genes encode bona fide antitoxin (YefM(Spn)) and toxin (YoeB(Spn)) products. We showed that overproduction of YoeB(Spn) is toxic to Escherichia coli cells, leading to severe inhibition of cell growth and to a reduction in cell viability; this toxicity was more pronounced in an E. coli B strain than in two E. coli K-12 strains. The YoeB(Spn)-mediated toxicity could be reversed by the cognate antitoxin, YefM(Spn), but not by overproduction of the E. coli YefM antitoxin. The pneumococcal proteins were purified and were shown to interact with each other both in vitro and in vivo. Far-UV circular dichroism analyses indicated that the pneumococcal antitoxin was partially, but not totally, unfolded and was different than its E. coli counterpart. Molecular modeling showed that the toxins belonging to the family were homologous, whereas the antitoxins appeared to be specifically designed for each bacterial locus; thus, the toxin-antitoxin interactions were adapted to the different bacterial environmental conditions. Both structural features, folding and the molecular modeled structure, could explain the lack of cross-complementation between the pneumococcal and E. coli antitoxins.  相似文献   

19.
DNA microarrays revealed that expression of ycfR, which encodes a putative outer membrane protein, is significantly induced in Escherichia coli biofilms and is also induced by several stress conditions. We show that deletion of ycfR increased biofilm formation fivefold in the presence of glucose; the glucose effect was corroborated by showing binding of the cyclic AMP receptor protein to the ycfR promoter. It appears that YcfR is a multiple stress resistance protein, since deleting ycfR also rendered the cell more sensitive to acid, heat treatment, hydrogen peroxide, and cadmium. Increased biofilm formation through YcfR due to stress appears to be the result of decreasing indole synthesis, since a mutation in the tnaA gene encoding tryptophanase prevented enhanced biofilm formation upon stress and adding indole prevented enhanced biofilm formation upon stress. Deleting ycfR also affected outer membrane proteins and converted the cell from hydrophilic to hydrophobic, as well as increased cell aggregation fourfold. YcfR seems to be involved in the regulation of E. coli K-12 biofilm formation by decreasing cell aggregation and cell surface adhesion, by influencing the concentration of signal molecules, and by interfering with stress responses. Based on our findings, we propose that this locus be named bhsA, for influencing biofilm through hydrophobicity and stress response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号