首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For understanding of the ferritin gene expression pattern and the mechanism of iron homeostasis in tobacco (Nicotiana tabaccum L.) plants, two full-length ferritin cDNAs, NtFerl and NtFer2, were isolated from tobacco seedlings and characterized. These cDNAs are 1 214 and 1 125 bp nucleotides and encode 25 1 and 259 amino acid residues, respectively. The deduced amino acid sequences showed that two tobacco ferritins share the same characteristics as the plant ferritins from Arabidopsis, soybean, and maize.Southern blotting analysis indicated that both NtFerl and NtFer2 were probably multicopy genes in the tobacco genome. Northern blotting analysis indicated that iron loading of tobacco plantlets increased the ferritin mRNA abundance and that NtFerl expression was higher and more sensitive to iron than NtFer2expression. Furthermore, NtFerl was expressed in both leaves and roots, whereas NtFer2 was expressed mainly in leaves.  相似文献   

2.
Isolation and Expression Pattern Analysis of Two Ferritin Genes in Tobacco   总被引:4,自引:0,他引:4  
For understanding of the ferritin gene expression pattern and the mechanism of iron homeostasis in tobacco (Nicotiana tabaccum L.) plants, two full-length ferritin cDNAs, NtFerl and NtFer2, were isolated from tobacco seedlings and characterized. These cDNAs are 1 214 and 1 125 bp nucleotides and encode 251 and 259 amino acid residues, respectively. The deduced amino acid sequences showed that two tobacco ferritins share the same characteristics as the plant ferritins from Arabidopsis, soybean, and maize. Southern blotting analysis indicated that both NtFerl and NtFer2 were probably multicopy genes in the tobacco genome. Northern blotting analysis indicated that iron loading of tobacco plantlets increased the ferritin mRNA abundance and that NtFerl expression was higher and more sensitive to iron than NtFer2 expression. Furthermore, NtFerl was expressed in both leaves and roots, whereas NtFer2 was expressed mainly in leaves.  相似文献   

3.
Iron accumulation in tobacco plants expressing soyabean ferritin gene   总被引:1,自引:0,他引:1  
High iron-content transgenic tobacco plants have been produced by transfer via Agrobacterium tumefaciens of soyabean ferritin cDNA under the control of a CaMV 35S promoter. Immunoblot analysis of protein from transgenic tobacco plants suggested mature ferritin subunits are produced by cleavage of transit peptides. The expressed ferritin was observed in the tissues of leaves and stems. The maximal iron content of transformant leaves was approximately 30% higher than leaves from non-transformants. The increased iron content of each transformant was correlated with increases in ferritin content. These results demonstrate the potential of breeding high iron content crops by introduction of the ferritin gene  相似文献   

4.
姜廷波  丁宝建  李凤娟  杨传平 《遗传学报》2006,33(12):1120-1126
铁蛋白是一种由24个亚基组成的高分子贮藏蛋白质,可以储存多达4500个铁原子,在动植物及微生物的新陈代谢中起着非常重要的作用。有研究表明,外源铁蛋白的大量表达可以提高植物储存铁离子的能力。为了明确外源铁蛋白基因转化植物中内源铁蛋白基因差异表达与植物含铁量的关系,本研究在成功获得2个烟草铁蛋白基因的全长cDNA克隆NtFerl(登录号:ay083924)和NtFer2(登录号:ay141105)的基础上,以烟草品种SR-1(Nicotiana tabacum cv.Petit Havana SR-1)为受体,培育了转铁蛋白基因烟草。将双元载体pBI121中的GUS基因用来自大豆的铁蛋白基因SoyFer1(登录号:m64337)置换,利用农杆菌介导法转化烟草叶盘,获得在CaMV35S启动子驱动表达的大豆铁蛋白基因转化烟草植株。Northern杂交和Western杂交分析表明外源铁蛋白基因在转基因烟草中得到了正确表达。比较转基因烟草和非转基因烟草的内源铁蛋白基因表达强度、叶片铁含量、根系铁还原酶活性、株高和鲜重表明,外源铁蛋白基因不但促进了NtFer1的表达,提高转基因植株的储存铁的能力和根系铁还原酶活性,而且促进植株的生长速度。以上结果说明,外源铁蛋白基因转化烟草中内源铁蛋白基因的表达、铁离子的还原吸收及光和作用都得到了进一步的提高。  相似文献   

5.
For studying the effects of endogenous ferritin gene expressions (NtFer1, GenBank accession number ay083924; and NtFer2, GenBank accession number ay141105) on the iron homeostasis in transgenic tobacco (Nicotiana tabacum L.) plants expressing soybean (Glycine max Merr) ferritin gene (SoyFer1, GenBank accession number m64337), the transgenic tobacco has been produced by placing soybean ferritin cDNA cassette under the control of the CaMV 35S promoter. The exogenous gene expression was examined by both Northern- and Western-blot analyses. Comparison of endogenous ferritin gene expressions between nontransformant and transgenic tobacco plants showed that the expression of NtFer1 was increased in the leaves of transgenic tobacco plants, whereas the NtFer2 expression was unchanged. The iron concentration in the leaves of transgenic tobacco plants was about 1.5-folds higher than that in nontransformant. Enhanced growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weights significantly greater than those in the nontransformant. These results demonstrated that exogenous ferritin expression induced increased expression of at least one of the endogenous ferritin genes in transgenic tobacco plants by enhancing the ferric chelate reductase activity and iron transport ability of the root, and improved the rate of photosynthesis.  相似文献   

6.
Ferritin overexpression in transgenic plants has been recently reported to increase leaf and seed iron content. We investigated the influence of various soil conditions on this increase in leaf iron content. One control transgenic tobacco and two transgenic tobaccos overexpressing ferritin in the plastids or in the cytoplasm, respectively, were grown on five different soils, two of them being amended with sewage sludge. Although a significant increase in leaf iron concentration was measured in transgenics overexpressing ferritin grown on three out of five soils, this increase was not a general rule. On some soils, leaf iron concentration of control plants was as high as in transgenics grown on other soils. In addition, an increased phosphorus concentration in the two sewage sludge amended soils correlated with a high leaf iron concentration in control plants, similar to the one measured in ferritin transformed plants. Indeed, growing plants in vitro with various increasing phosphate concentrations revealed a direct P involvement in iron loading of control plants, at a similar level as overexpressing ferritin plants. Also, with one of the soil tested, not only iron but also manganese, zinc and cadmium, and to a much lesser extent copper, nickel and lead were found more abundantly in ferritin transformed plants than in control plants. These data indicate that the iron fortification of leaves, based on ferritin overexpression, could be limited in its biotechnological application because of its high soil dependence.  相似文献   

7.
Ferritin is a large multisubunit protein that stores iron in plants, animals, and bacteria. In animals, the protein is mainly cytoplasmic and is highly conserved, while in plants ferritin is found in chloroplasts and other plastids. Ferritin is synthesized in plants as a larger precursor of the mature subunit. There is no sequence information for ferritin from plants, except an NH2-terminal peptide of 35 residues which shows little similarity to any known ferritin sequences or transit peptides (Laulhere, J. P., Laboure, A. M., and Briat, J. F. (1989) J. Biol. Chem. 264, 3629-3635). To understand the genetic origin and the location of ferritin synthesis in plant cells, as well as the structure of ferritin from plants, we have sequenced both CNBr peptides from pea seed ferritin and nucleotides of a soybean hypocotyl ferritin cDNA, identified using a frog ferritin cDNA as a probe. Comparison of pea and soybean sequences showed an identity of 89%. Alignment of the plant ferritin sequences with animal ferritins showed 55-65% sequence identity in the common regions. However, a peptide of 28 amino acids extended the NH2 terminus of the plant ferritins. Furthermore, the cDNA encoded additional amino acids which appear to be a transit peptide. None of the sequences in soybean ferritin were found in the tobacco chloroplast genome, suggesting, as does the transit peptide, a nuclear location of ferritin gene(s) in plants. Plant ferritin mRNA is 400-500 nucleotides longer than animal ferritin mRNAs, a difference accounted for in part by the extra peptides encoded. The size of soybean ferritin mRNA was constant in different tissues but expression varied in different tissues (leaf greater than hypocotyl). Thus, higher plants and animal ferritins display sequence homology and differential tissue expression. An ancient, common progenitor apparently gave rise to contemporary eukaryotic ferritins after specific modifications, e.g. transport to plasmids.  相似文献   

8.
Ferritin protein nanocages are the main iron store in mammals. They have been predicted to fulfil the same function in plants but direct evidence was lacking. To address this, a loss-of-function approach was developed in Arabidopsis. We present evidence that ferritins do not constitute the major iron pool either in seeds for seedling development or in leaves for proper functioning of the photosynthetic apparatus. Loss of ferritins in vegetative and reproductive organs resulted in sensitivity to excess iron, as shown by reduced growth and strong defects in flower development. Furthermore, the absence of ferritin led to a strong deregulation of expression of several metal transporters genes in the stalk, over-accumulation of iron in reproductive organs, and a decrease in fertility. Finally, we show that, in the absence of ferritin, plants have higher levels of reactive oxygen species, and increased activity of enzymes involved in their detoxification. Seed germination also showed higher sensitivity to pro-oxidant treatments. Arabidopsis ferritins are therefore essential to protect cells against oxidative damage.  相似文献   

9.
Ferritins from maize, pea, and soya bean seeds were purified. They contain two polypeptides of 28 and 26.5 kDa. The molecular weight of native pea seed ferritin has been estimated to be 540,000. Pea and maize seed ferritins were compared by reverse phase high performance liquid chromatography, amino acid composition, and two-dimensional gel electrophoresis. They are very similar, although four isoforms of the 28-kDa polypeptide from the pea were observed in contrast to a unique polypeptide in maize. No isoforms of the 26.5-kDa polypeptide were detected. Rabbit antibodies were produced in response to pea seed ferritin. It was shown by Western blot analysis that ferritins of the three plants analyzed share immunological determinants. However, horse spleen ferritin was not recognized by the phytoferritin antibodies. Antibodies were also used to demonstrate that ferritins are not uniformly distributed in different pea organs from 30-day-old iron-unloaded plants. The protein was more abundant in flowers than in fruits and roots, and was not detected in leaves.  相似文献   

10.
Transgenic tobacco plants that synthesize alfalfa ferritin in vegetative tissues--either in its processed form in chloroplasts or in the cytoplasmic nonprocessed form--retained photosynthetic function upon free radical toxicity generated by iron excess or paraquat treatment. Progeny of transgenic plants accumulating ferritin in their leaves exhibited tolerance to necrotic damage caused by viral (tobacco necrosis virus) and fungal (Alternaria alternata, Botrytis cinerea) infections. These transformants exhibited normal photosynthetic function and chlorophyll content under greenhouse conditions. We propose that by sequestering intracellular iron involved in generation of the very reactive hydroxyl radicals through a Fenton reaction, ferritin protects plant cells from oxidative damage induced by a wide range of stresses.  相似文献   

11.
We have produced transgenic lettuce plants accumulating the iron storage protein ferritin. The integration of the ferritin gene and expression levels in leaves were examined by Southern- and Western-blot analysis, respectively. It was shown that transgenic lettuce plants contained iron levels ranging from 1.2 to 1.7 times that of the control plants, however, the manganese content in transgenic lettuce plants was similar to that in the control. Enhanced growth of transgenic lettuces was observed at the early developmental stages, resulting in weights 27–42% greater than those of control plants. Transgenic lettuce had photosynthesis rates superior to those of the controls, and grew larger and faster compared with the controls during the period of 3 months from germination. These results demonstrate the possibility of producing lettuce plants with high yield, high iron content and rapid growth rate. Received: 21 March 1999 / Accepted: 14 September 1999  相似文献   

12.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

13.
We used particle bombardment to produce transgenic wheat and rice plants expressing recombinant soybean ferritin, a protein that can store large amounts of iron. The cDNA sequence was isolated from soybean by RT-PCR and expressed using the constitutive maize ubiquitin-1 promoter. The presence of ferritin mRNA and protein was confirmed in the vegetative tissues and seeds of transgenic wheat and rice plants by northern and western blot analysis, respectively. The levels of ferritin mRNA were similar in the vegetative tissues of both species, but ferritin protein levels were higher in rice. Both ferritin mRNA and protein levels were lower in wheat and rice seeds. ICAP spectrometry showed that iron levels increased only in vegetative tissues of transgenic plants, and not in the seeds. These data indicate that recombinant ferritin expression under the control of the maize ubiquitin promoter significantly increases iron levels invegetative tissues, but that the levels of recombinant ferritin in seeds are not sufficient to increase iron levels significantly over those in the seeds of non-transgenic plants.  相似文献   

14.
Iron deficiency anemia is one of the serious ailments related to nutrition in the developing countries. Fruit and vegetable crops favor the bioavailability of iron. Banana is consumed as a staple food in the tropics. Iron-fortified bananas provide an effective means of controlling the iron deficiency. Embryogenic cells of banana cv. Rasthali (AAB) were transformed with soybean ferritin cDNA using two different expression cassettes pSF and pEFE-SF to express ferritin. Transgenic nature of the regenerated plants was confirmed by PCR. Transgenic plants were regenerated and analyzed through PCR and PCR-Southern analysis. The expression of ferritin was confirmed by RT-PCR. Iron and zinc levels in the transgenic and control plants were estimated by atomic absorption spectroscopy. A 6.32-fold increase in iron accumulation and a 4.58-fold increase in the zinc levels were noted in the leaves of transgenic plants. Thus, iron- and zinc-fortified bananas could be developed as a functional food to overcome the malnutrition-related iron deficiency. This is the first report on the iron and zinc fortification of banana.  相似文献   

15.
16.
The Arabidopsis gene FRO6(AtFRO6) encodes ferric chelate reductase and highly expressed in green tissues of plants. We have expressed the gene AtFRO6 under the control of a 35S promoter in transgenic tobacco plants. High-level expression of AtFRO6 in transgenic plants was confirmed by northern blot analysis. Ferric reductase activity in leaves of transgenic plants grown under iron-sufficient or iron-deficient conditions is 2.13 and 1.26 fold higher than in control plants respectively. The enhanced ferric reductase activity led to increased concentrations of ferrous iron and chlorophyll, and reduced the iron deficiency chlorosis in the transgenic plants, compared to the control plants. In roots, the concentration of ferrous iron and ferric reductase activity were not significantly different in the transgenic plants compared to the control plants. These results suggest that FRO6 functions as a ferric chelate reductase for iron uptake by leaf cells, and overexpression of AtFRO6 in transgenic plants can reduce iron deficiency chlorosis.  相似文献   

17.
Sweetpotato highly produces carotenoids in storage roots. In this study, a cDNA encoding geranylgeranyl phyrophosphate synthase (GGPS), named IbGGPS, was isolated from sweetpotato storage roots. Green fluorescent protein (GFP) was fused to the C-terminus of IbGGPS to obtain an IbGGPS-GFP fusion protein that was transiently expressed in both epidermal cells of onion and leaves of tobacco. Confocal microscopic analysis determined that the IbGGPS-GFP protein was localized to specific areas of the plasma membrane of onion and chloroplasts in tobacco leaves. The coding region of IbGGPS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana to obtain transgenic plants. High performance liquid chromatography (HPLC) analysis showed a significant increase of total carotenoids in transgenic plants. The seeds of transgenic and wild-type plants were germinated on an agar medium supplemented with polyethylene glycol (PEG). Transgenic seedlings grew significantly longer roots than wild-type ones did. Further enzymatic analysis showed an increased activity of superoxide dismutase (SOD) in transgenic seedlings. In addition, the level of malondialdehyde (MDA) was reduced in transgenics. qRT-PCR analysis showed altered expressions of several genes involved in the carotenoid biosynthesis in transgenic plants. These data results indicate that IbGGPS is involved in the biosynthesis of carotenoids in sweetpotato storage roots and likely associated with tolerance to osmotic stress.  相似文献   

18.
19.
Regulation of iron uptake and use is critical for plant survival and growth. We isolated an MYB gene from Malus xiaojinensis named MxMYB1, which is induced under Fe-deficient conditions. Expression of MxMYB1 was upregulated by Fe starvation in the roots but not in leaves, suggesting that MxMYB1 might play a role in iron nutrition in roots. Transgenic Arabidopsis plants expressing MxMYB1 exhibited lower iron content as compared with wild type plants under both Fe-normal (40 Μm) and Fe-deflcient conditions (Fe omitted and Ferrozine 300 Μm). However, the contents of Cu, Zn and Mn were not changed in these transgenic plants. Gene chip and real-time polymerase chain reaction analyses indicated that the expression of two Fe-related genes encoding an iron transporter AtIRT1 and an iron storage protein ferritin AtFER1 might be negatively regulated by MxMYB1 as the expression levels of these genes were lower in MxMYB1 expressing transgenic Arabidopsls plants as compared with wild type plants under both Fe-normal and Fe-deficient conditions. These results suggest that MxMYB1 may function as a negative regulator of iron uptake and storage In plants.  相似文献   

20.
Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2)   总被引:1,自引:0,他引:1  
Iron is essential to plants. However, when free and in excess, iron can catalyze the formation of oxygen free radicals. Ferritin, a protein capable of storing up to 4500 atoms of iron, can act as an iron buffer inside plant cells. Using a strategy based in amplicon size difference, we were able to analyze the expression profile of the two rice ferritin genes (OsFER1 and OsFER2). Both genes are expressed, although with different regulation and organ distribution. Exposure to copper, Paraquat, SNP and excess iron led to accumulation of ferritin mRNA, remarkably of OsFER2. The iron-induced expression was abolished by treatment with GSH, indicating that the induction observed is dependent of an oxidative step. OsFER2 mRNA levels in rice flag leaves and panicles at different reproductive stages were higher than OsFER1 mRNA levels. No ferritin mRNA was detected in rice seeds. However, imbibition under light led to ferritin expression, which was abolished when seeds were kept in the dark, suggesting a light-regulated induction. Ferritin mRNA accumulation was seen in the dark only when seeds were germinated in the presence of externally supplied iron. We suggest that the primary role of rice ferritins is related to defense against iron-mediated oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号