首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli has a unique enzyme, deoxyguanosine triphosphate triphosphohydrolase (dGTPase) that cleaves dGTP into deoxyguanosine and tripolyphosphate. An E. coli mutant, optA1, has a 50-fold increased level of the dGTPase (Beauchamp, B.B., and Richardson, C.C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 2563-2567). Successful infection of E. coli optA1 by bacteriophage T7 is dependent on a 10-kDa protein encoded by gene 1.2 of the phage. In this report we show that the gene 1.2 protein is a specific inhibitor of the E. coli dGTPase. Gene 1.2 protein inhibits dGTPase activity by forming a complex with the dGTPase with an apparent stoichiometry of two monomers of gene 1.2 protein/tetramer of dGTPase. The interaction is reversible with a half-life of the complex of 30 min and an apparent binding constant Ki of 35 nM. The binding of inhibitor of dGTPase is cooperative, indicating allosteric interactions between dGTPase subunits with a Hill coefficient of 1.7. The interaction is modulated differentially by DNA, RNA, and deoxyguanosine mono-, di-, and triphosphate. Both the binding of the substrate dGTP and of the inhibitor gene 1.2 protein induce conformational changes in dGTPase. The conformation of the enzyme in the presence of saturating concentrations of dGTP virtually prevents the association with, and the dissociation from, gene 1.2 protein.  相似文献   

2.
Escherichia coli encodes a dGTP triphosphohydrolase (dGTPase) that cleaves dGTP to deoxyguanosine and tripolyphosphate. dGTP is hydrolyzed with a Michaelis constant (Km) of 5 microM and a maximal velocity (Vmax) of 1.8 mumols/min/mg. The ribonucleotide GTP is a poor substrate with a much lower affinity. It is hydrolyzed with a Km of 150 microM and Vmax of 0.07 mumols/min/mg. Bacteriophage T7 encodes a specific inhibitor of dGTPase, the gene 1.2 protein, that forms a tight complex with the enzyme. The enzyme-inhibitor complex binds dGTP with a dissociation constant (KD) of 1.5 microM, but the bound dGTP is not hydrolyzed. It remains stably bound to the complex with a half-life of approximately 5 min. In contrast, dGTP is unable to bind to gene 1.2 protein alone, and dGTP bound to dGTPase alone is quickly hydrolyzed and released. Surprisingly, the dGTPase-gene 1.2 protein complex has a higher affinity for GTP than for dGTP. GTP is stably bound to the dGTPase-gene 1.2 protein complex with a half-life greater than 30 min and KD of 0.8 microM; GTP is not stably bound to either dGTPase or gene 1.2 protein alone. Both GTP and dGTP bind to and stabilize the dGTPase-gene 1.2 protein complex, inhibiting its dissociation. Although the presence of dGTP induces conformation changes in dGTPase so that it is unable to associate with the gene 1.2 protein, saturating concentrations of GTP have no such effect. The enzyme efficiently associates with its inhibitor in the presence of GTP. These results indicate that E. coli dGTPase and gene 1.2 protein interact to form a high affinity GTP-binding site. dGTP is most effective in preventing the association of the enzyme with the inhibitor whereas GTP is most effective in preventing the dissociation of the enzyme-inhibitor complex.  相似文献   

3.
We have studied eight frameshift mutations induced by the Escherichia coli mutator allele mutD5 in a derivative of the bacteriophage M13mp8, carrying an insertion of 91 base pairs derived from the tetR gene of pBR 322. All mutations were analyzed by the dideoxy sequencing method and were found to be deletions of a GC base pair which occurred in regions characterized by the presence of at least two GC base pairs. We have attempted to explain these results by the looping-out model, which was previously proposed to unify the results obtained with mutD5.  相似文献   

4.
With a probe constructed from the wild-type gene, a DNA fragment containing the entire mutT1 mutator gene was isolated and cloned into pUC18. Nucleotide sequence analysis revealed that the mutator defect was most likely due to an IS1 insertion into the wild-type gene.  相似文献   

5.
6.
We have isolated an Escherichia coli gene which, when overexpressed, is able to complement the permeability defects of a vancomycin-susceptible mutant. This gene, designated sanA, is located at min 47 of the E. coli chromosome and codes for a 20-kDa protein with a highly hydrophobic amino-terminal segment. A strain carrying a null mutation of the sanA gene, transferred to the E. coli chromosome by homologous recombination, is perfectly viable, but after two generations at high temperature (43 degrees C), the barrier function of its envelope towards vancomycin is defective.  相似文献   

7.
The Escherichia coli dGTP triphosphohydrolase (dGTPase) encoded by the dgt gene catalyses the hydrolysis of dGTP to deoxyguanosine and triphosphate. The recent discovery of a mutator effect associated with deletion of dgt indicated participation of the triphosphohydrolase in preventing mutagenesis. Here, we have investigated the possible involvement of dgt in facilitating thymine utilization through its ability to provide intracellular deoxyguanosine, which is readily converted by the DeoD phosphorylase to deoxyribose-1-phosphate, the critical intermediate that enables uptake and utilization of thymine. Indeed, we observed that the minimal amount of thymine required for growth of thymine-requiring (thyA) strains decreased with increased expression level of the dgt gene. As expected, this dgt-mediated effect was dependent on the DeoD purine nucleoside phosphorylase. We also observed that thyA strains experience growth difficulties upon nutritional shift-up and that the dgt gene facilitates adaptation to the new growth conditions. Blockage of the alternative yjjG (dUMP phosphatase) pathway for deoxyribose-1-phosphate generation greatly exacerbated the severity of thymine starvation in enriched media, and under these conditions the dgt pathway becomes crucial in protecting the cells against thymineless death. Overall, our results suggest that the dgt-dependent pathway for deoxyribose-1-phosphate generation may operate under various cell conditions to provide deoxyribosyl donors.  相似文献   

8.
The enzyme dGTP triphosphohydrolase (dGTPase; EC 3.1.5.1) was assayed in partially purified extracts of several genera of bacteria, and it was found to be strictly confined to members of the family Enterobacteriaceae. Whereas 11 of 12 enteric bacteria had comparable activity for this enzyme, 8 of 8 nonenteric bacteria, including species in the very closely related genera Vibrio and Aeromonas, did not assay positively for this enzyme. When challenged with Escherichia coli anti-dGTPase antiserum, the active enzymes fell into three groups, retaining 0, approximately 50, or 100% of their original activity. A computer search has revealed an amino acid sequence in the E. coli enzyme which matches well with the single-stranded-DNA binding motif of Prasad and Chiu (J. Mol. Biol. 193:579-584, 1987) and may account for the enzyme's observed interaction with DNA. As far as we are aware, this is the only enzymatic activity so far reported to be present solely in the enteric bacteria.  相似文献   

9.
10.
The complete nucleotide sequence has been determined for a 2027-bp region that encompasses the structural gene (dgt) encoding deoxyguanosine triphosphate triphosphohydrolase (dGTPase) from Escherichia coli. The gene resides between the htrA and dapD loci at 3.75-3.8' on the bacterial chromosome. Using homologous recombination in a recD recipient, a dgt- bacterial strain was constructed that was deficient in producing functional dGTPase. Comparison of dGTP pools in this and other strains revealed that dGTPase synthesized in vivo does to some degree modulate the level of dGTP in the bacterial cell, yet the magnitude of this modulation may be insufficient to explain the physiological function of dGTPase.  相似文献   

11.
12.
The mutL gene product is part of the dam-directed mismatch repair system of Escherichia coli but has no known enzymatic function. It forms a complex on heteroduplex DNA with the mismatch recognition MutS protein and with MutH, which has latent endonuclease activity. An N-terminal hexahistidine-tagged MutL was constructed which was active in vivo. As a first stop to determine the functional domains of MutL, we have isolated 72 hydroxylamine-induced plasmid-borne mutations which impart a dominant-negative phenotype to the wild-type strain for increased spontaneous mutagenesis. None of the mutations complement a mutL deletion mutant, indicating that the mutant proteins by themselves are inactive. All the dominant mutations but one could be complemented by the wild-type mutL at about the same gene dosage. DNA sequencing indicated that the mutations affected 22 amino acid residues located between positions 16 and 549 of the 615 amino acid protein. In the N-terminal half of the protein, 12 out of 15 amino acid replacements occur at positions conserved in various eukaryotic MutL homologs. All but one of the sequence changes affecting the C-terminal end of the protein are nonsense mutations.  相似文献   

13.
14.
The properties of mutR, a mutator closely linked to thyA, have been further characterized. We have found that the mutator gene is carried on a specialized transducing phage (lambdapcI857 thyA) generated by the excision of lambdacI857 integrated at a secondary attachment site between lysA and thyA. We present three lines of evidence indicating that mutR is a nonessential gene. (i) Deletions of the mutator can be found amoung survivors of heat induction of lambdacI857 when the phage is integrated between lysA and thyA. (ii) Mutations in mutR can be induced with the frameshift mutagen ICR-191. (iii) An amber mutant in mutR has been found. Viable strains could be made by combining the mutator with polB, polA polR, ligts7, and uvrA mutations. The mutator was still able to increase the spontaneous mutation frequency in these genetic backgrounds. When the reversion patterns of a series of well-characterized trpA mutations were analyzed, the results suggested that mutR is more efficient at causing transitions than transversion mutations.  相似文献   

15.
The MutS protein of Escherichia coli is part of the dam-directed MutHLS mismatch repair pathway which rectifies replication errors and which prevents recombination between related sequences. In order to more fully understand the role of MutS in these processes, dominant negative mutS mutations on a multicopy plasmid were isolated by screening transformed wild-type cells for a mutator phenotype, using a Lac+ papillation assay. Thirty-eight hydroxylamine- and 22 N-methyl-N'-nitro-N-nitrosoguanidine-induced dominant mutations were isolated. Nine of these mutations altered the P-loop motif of the ATP-binding site, resulting in four amino acid substitutions. With one exception, the remaining sequenced mutations all caused substitution of amino acids conserved during evolution. The dominant mutations in the P-loop consensus caused severely reduced repair of heteroduplex DNA in vivo in a mutS mutant host strain. In a wild-type strain, the level of repair was decreased by the dominant mutations to between 12 to 90% of the control value, which is consistent with interference of wild-type MutS function by the mutant proteins. Increasing the wild-type mutS gene dosage resulted in a reversal of the mutator phenotype in about 60% of the mutant strains, indicating that the mutant and wild-type proteins compete. In addition, 20 mutant isolates showed phenotypic reversal by increasing the gene copies of either mutL or mutH. There was a direct correlation between the levels of recombination and mutagenesis in the mutant strains, suggesting that these phenotypes are due to the same function of MutS.  相似文献   

16.
The mutator gene, mutT, has been cloned into an expression vector and overproduced in Escherichia coli. The gene product has been purified to over 90% homogeneity as judged by gel electrophoresis and amino acid analysis. The amino acid composition of the protein and the sequence of the 20 amino acids of the N-terminal region agree well with the nucleotide sequence of the gene reported by Akiyama et al. (Akiyama, M., Horiuchi, T., and Sekiguchi, M. (1987) Mol. Gen. Genet. 206, 9-16) and indicate that the first of the potential initiation codons (position 164) of the open reading frame in the PvuII fragment carrying the mutT gene is the site of initiation of translation of the 15,000-Da polypeptide. A novel nucleoside triphosphatase activity which has a preference for dGTP is associated with the purified protein, and preliminary experiments are consistent with the notion that the mutT gene product is the enzyme responsible for this activity.  相似文献   

17.
The structural gene for deoxyguanosine triphosphate triphosphohydrolase (dGTPase) (EC 3.1.5.1) and its regulator, optA, have been located on a lambda phage carrying a 17.5kb Escherichia coli DNA insert. The DNA fragment has been excised and ligated into pBR325 and also transferred to another lambda vector. From the results of transduction and transformation experiments, we find that the structural gene for dGTPase is very closely linked to optA and dapD, which locates it at approximately 3.6 minutes on the genetic map of E. coli K12. We propose the mnemonic dgt as the designation for the structural gene for this enzyme.  相似文献   

18.
Mutational specificity of a conditional Escherichia coli mutator, mutD5   总被引:34,自引:0,他引:34  
Summary MutD5, a conditional mutator in Escherichia coli, causes the stimulation of mutation frequencies 50 to 100 fold in minimal medium. In rich medium mutation frequencies are further increased 50 to 100 fold. We show here that all possible base-pair mutations are increased in a mutD5 strain grown in rich medium. A:TG:C transitions as well as A:TC:G, A:TT:A aud G:CC:G transversions are stimulated. Transitions occur more frequently than transversions. MutD5 also increases the reversion frequencies of three trpA frameshift mutations by causing base-pair additions, and, possibly, base-pair deletions.  相似文献   

19.
To investigate the possible role of accessory subunits of Escherichia coli DNA polymerase III holoenzyme (HE) in determining chromosomal replication fidelity, we have investigated the role of the dnaX gene. This gene encodes both the tau and gamma subunits of HE, which play a central role in the organization and functioning of HE at the replication fork. We find that a classical, temperature-sensitive dnaX allele, dnaX36, displays a pronounced mutator effect, characterized by an unusual specificity: preferential enhancement of transversions and -1 frameshifts. The latter occur predominantly at non-run sequences. The dnaX36 defect does not affect the gamma subunit, but produces a tau subunit carrying a missense substitution (E601K) in its C-terminal domain (domain V) that is involved in interaction with the Pol III alpha subunit. A search for new mutators in the dnaX region of the chromosome yielded six additional dnaX mutators, all carrying a specific tau subunit defect. The new mutators displayed phenotypes similar to dnaX36: strong enhancement of transversions and frameshifts and only weak enhancement for transitions. The combined findings suggest that the tau subunit of HE plays an important role in determining the fidelity of the chromosomal replication, specifically in the avoidance of transversions and frameshift mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号