首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
Mutagenesis of cauliflower mosaic virus   总被引:13,自引:0,他引:13  
L K Dixon  I Koenig  T Hohn 《Gene》1983,25(2-3):189-199
A series of insertion mutants of cauliflower mosaic virus (CaMV) DNA has been constructed in vitro. These insertions consist of a short DNA sequence (10 or 22 bp) containing a restriction endonuclease site (SmaI) not represented on the viral DNA. Viral infectivity was analyzed by inoculating plants with the mutated cloned viral DNA and observing symptoms. Insertions within ORFVII, and in one site within the large intergenic region, did not interfere with viral infectivity, whilst insertions within ORFII and at the end of ORFIV retarded the development of viral symptoms. All other insertion mutants analyzed were lethal. CaMV with a deletion of 105 bp within ORFVII was viable. Such viable mutants can be used to construct additional deletions or to insert foreign DNA into the viral genome.  相似文献   

2.
Sequence of figwort mosaic virus DNA (caulimovirus group).   总被引:19,自引:3,他引:16       下载免费PDF全文
  相似文献   

3.
The genome of the geminivirus tomato golden mosaic virus (TGMV) is divided between two DNA components, designated A and B, which differ in sequence except for a 230-nucleotide common region. The A genome component is known to encode viral functions necessary for viral DNA replication, while the B genome component specifies functions necessary for spread of the virus through the infected plant. To identify cis-acting sequences required for viral DNA replication, several mutants were constructed by the introduction of small insertions into TGMV B at selected sites within and just outside the common region. Other mutants had the common region inverted or deleted. All of the mutants were tested for their effects on infectivity and DNA replication in whole plants and leaf discs. Our results indicate that the common region in its correct orientation is required for infectivity and for replication of TGMV B. Furthermore, the conserved hairpin loop sequence located within the TGMV common region and found in all geminiviruses is necessary for DNA replication, and may be part of the viral replication origin.  相似文献   

4.
5.
A DNA fragment from fowlpox virus cloned on a plasmid vector was modified to contain foreign DNA inserts within an intergenic region. In a first step, a 32-base-pair intergenic region from the fowlpox virus genome corresponding to the position of the thymidine kinase locus in the vaccinia virus genome was enlarged to 55 base pairs by site-directed mutagenesis. A unique restriction endonuclease site introduced upstream of the intergenic region was then used to insert various foreign DNA fragments. The lacZ gene encoding beta-galactosidase and the measles virus gene encoding the fusion protein were positioned downstream of two vaccinia virus p7.5 promoter elements in either a direct repeat or inverted repeat orientation. Foreign DNA inserts contained within the fowlpox virus sequence were transferred to the viral genome by homologous recombination occurring in cells infected with a fowlpox virus temperature-sensitive mutant and transfected with both wild-type viral DNA and plasmid DNA. Recombinant viruses were selected for the expression of beta-galactosidase activity by screening for blue plaques in the presence of a chromogenic substrate. Stable recombinants expressing both the lacZ gene and the unselected measles gene were obtained when the p7.5 promoter was present as an inverted repeat. However, when the p7.5 promoter was in the direct repeat orientation, viral recombinants which initially expressed both gene inserts readily deleted the lacZ gene flanked by the promoter repeat. The methods described enable precise insertion and deletion of foreign genes in the fowlpox virus genome and could be applied to other intergenic regions of the same virus as well as other poxviruses.  相似文献   

6.
Summary A hybrid Cauliflower Mosaic Virus (CaMV) genome containing a selectable marker gene was constructed by replacing the gene VI coding region with the aminoglycoside (neomycin) phosphotransferase type II [APH(3)II] gene from Tn5. This modified viral genome was tested for its infectivity both in planta and in a protoplast transformation system of Brassica campestris var. rapa. Stable, genetically transformed cell lines of B. campestris var. rapa were obtained after transformation. DNA of the hybrid CaMV genome was found to be integrated into high molecular weight plant genomic DNA. Transformation was achieved only when the hybrid genome was supplied together with wild type viral DNA. A possible complementation of the modified CaMV genome with the wild type viral DNA as a helper molecule in planta and in the protoplast system is discussed.  相似文献   

7.
The effect of in vitro methylation at the HpaII sites in polyoma DNA on viral gene expression and the maintenance of the methyl groups upon replication in vivo were examined. Most of the methylatable sites are located in the early region coding for the viral large T antigen which is essential for the replication and infectivity of the viral DNA. Methylated or mock-methylated polyoma DNA produced the same number of virus plaques appearing at the same time post-transfection in either case. The lack of effect on the infectivity of the viral DNA indicates that the expression of the T antigen gene was not inhibited by methylation. Replication in vivo of the DNA also resulted in a total loss of the methyl groups introduced in vitro. These results underscore basic differences between the behavior of an autonomously functioning papovavirus DNA and the animal cell DNA vis-a-vis methylation at CpG sites. These differences might be due to subtle variations in the mechanism of regulation of gene expression and replication in the two systems.  相似文献   

8.
Plastid transformation vectors are E. coli plasmids carrying a plastid marker gene for selection, adjacent cloning sites and flanking plastid DNA to target insertions in the plastid genome by homologous recombination. We report here on a family of next generation plastid vectors carrying synthetic DNA vector arms targeting insertions in the rbcL-accD intergenic region of the tobacco (Nicotiana tabacum) plastid genome. The pSS22 plasmid carries only synthetic vector arms from which the undesirable restriction sites have been removed by point mutations. The pSS24 vector carries a c-Myc tagged spectinomycin resistance (aadA) marker gene whereas in vector pSS30 aadA is flanked with loxP sequences for post-transformation marker excision. The synthetic vectors will enable direct manipulation of passenger genes in the transformation vector targeting insertions in the rbcL-accD intergenic region that contains many commonly used restriction sites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
T Pelet  J Curran    D Kolakofsky 《The EMBO journal》1991,10(2):443-448
The P gene of bovine parainfluenza virus 3 (bPIV3) contains two downstream overlapping ORFs, called V and D. By comparison with the mRNA editing sites of other paramyxoviruses, two editing sites were predicted for bPIV3; site a to express the D protein, and site b to express the V protein. Examination of the bPIV3 mRNAs, however, indicates that site b is non-functional whereas site a operates frequently. Insertions at site a give rise to both V and D protein mRNAs, because a very broad distribution of Gs is added when insertions occur. This broad distribution is very different from the editing sites of Sendai virus or SV5, where predominantly one form of edited mRNA containing either a one or two G insertion respectively is created, to access the single overlapping ORF of these viruses. A model is proposed to explain how paramyxoviruses control the range of G insertions on that fraction of the mRNAs where insertions occur. The bPIV3 P gene is unique as far as we know, in that a sizeable portion of the gene expresses all 3 reading frames as protein. bPIV3 apparently does this from a single editing site by removing the constraints which control the number of slippage rounds which take place.  相似文献   

10.
Analysis of six monoclonal antibody-resistant (mar) mutants in herpes simplex virus type 1 glycoprotein B identified two type-common (II and III) and two type-specific (I and IV) antigenic sites on this molecule. To derive additional information on the location of these sites, mar mutations were mapped and nucleotide alterations were identified by DNA sequencing. Each mutant carried a single amino acid substitution resulting from a G-to-A base transition. Alterations affecting antibody neutralization were identified at residues 473, 594, 305, and 85 for mutants in sites I through IV, respectively. Two clonally distinct site II antibodies each selected mar mutants (Gly to Arg at residue 594) that exhibited a reduction in the rate of entry (roe) into host cells. A site II mar revertant that regained sensitivity to neutralization by site II antibodies also showed normal entry kinetics. DNA sequencing of this virus identified a single base reversion of the site II mar mutation, resulting in restoration of the wild-type sequence (Arg to Gly). This finding demonstrated that the mar and roe phenotypes were the result of a single mutation. To further define structures that contributed to antibody recognition, monoclonal antibodies specific for all four sites were tested for their ability to immune precipitate a panel of linker-insertion mutant glycoprotein B molecules. Individual polypeptides that contained single insertions of 2 to 28 amino acids throughout the external domain were not recognized or were recognized poorly by antibodies specific for sites II and III, whereas no insertion affected antibody recognition of sites I and IV. mar mutations affecting either site II or III were previously shown to cause temperature-sensitive defects in glycoprotein B glycosylation, and variants altered in both these sites were temperature sensitive for virus production. Taken together, the data indicate that antigenic sites II and III are composed of higher-order structures whose integrity is linked with the ability of glycoprotein B to function in virus infectivity.  相似文献   

11.
12.
M Yu  J Summers 《Journal of virology》1991,65(5):2511-2517
Mutations introduced into the capsid gene of duck hepatitis B virus (DHBV) were tested for their effects on viral DNA synthesis and assembly of enveloped viruses. Four classes of mutant phenotypes were observed among a series of deletions of covering the 3' end of the capsid open reading frame. Class I mutant capsids were able to support normal single-stranded and relaxed circular viral DNA synthesis; class II mutant capsids supported normal single-stranded DNA synthesis but not relaxed circular DNA synthesis; class III mutant capsids resembled class II capsids, but viral DNA synthesis was inhibited 5- to 10-fold; and class IV capsids were severely restricted in their ability to support viral DNA synthesis. Class I capsids were assembled into enveloped virions, but class II, III, and IV capsids were not. Viral DNA synthesized inside class II capsids was normal with respect to minus-strand DNA initiation, plus-strand DNA initiation, and circularization of the DNA, but plus strands failed to be elongated to mature 3-kb DNA. The results suggest that a function of the capsid protein specifically required for viral DNA maturation is also required for assembly of nucleocapsids into envelopes. Thus, class II mutants appear to be defective in the appearance of the "packaging signal" for virus assembly (J. Summers and W. Mason, Cell 29:403-415, 1982).  相似文献   

13.
The sequence dependence of Drosophila topoisomerase II supercoil relaxation and binding activities has been examined. The DNA substrates used in binding experiments were two fragments from Drosophila heat shock locus 87A7. One of these DNA fragments includes the coding region for the heat shock protein hsp70, and the other includes the intergenic non-coding region that separates two divergently transcribed copies of the hsp70 gene at the locus. The intergenic region was previously shown to have a much higher density of topoisomerase cleavage sites than the hsp70 coding region. Competition nitrocellulose filter binding assays demonstrate a preferential binding of the intergene fragment, and that binding specificity increases with increasing ionic strength. Dissociation kinetics indicate a greater kinetic stability of topoisomerase II complexes with the intergene DNA fragment. To study topoisomerase II relaxation activity, we used supercoiled plasmids that contained the same fragments from locus 87A7 cloned as inserts. The relative relaxation rates of the two plasmids were determined under several conditions of ionic strength, and when the plasmid substrates were included in separate reactions or when they were mixed in a single reaction. The relaxation properties of these two plasmids can be explained by a coincidence of high-affinity binding sites, strong cleavage sites, and sites used during the catalysis of strand passage events by topoisomerase II. Sequence dependence of topoisomerase II catalytic activity may therefore parallel the sequence dependence of DNA cleavage by this enzyme.  相似文献   

14.
Turnip crinkle virus (TCV) supports a small family of satellite RNAs (RNAs C, D and F). RNA C is a virulent satellite, producing severe symptoms in host plants, while RNAs D and F are avirulent satellites. The virulent satellite (RNA C) has two major domains--a 5'-domain similar to the avirulent satellites and a 3'-domain similar to the 3'-end of the TCV genome. To demonstrate that the 3'-domain of RNA C determines virulence, a chimeric satellite was constructed composed mostly of the 5'-domain of the avirulent satellite (RNA F) and the 3'-domain of the virulent satellite (RNA C). To locate other functional regions, small DNA fragments were inserted or deleted at various sites in the cDNA of virulent satellite (RNA C). Most small internal deletions and insertions in the midsection of the molecule had no detectable effects while those near the 3'-end of RNA C destroyed infectivity. Modifications in a small region centering on an AGCAGC repeat in the domain of satellite homology blocked the accumulation of monomers and presumably the processing of RNA C. Other modifications in this region produced more intense symptoms. Hence, these experiments reveal regions of the satellite which determine virulence, are essential for infectivity, affect monomer accumulation (RNA processing) and modulate symptom expression.  相似文献   

15.
16.
Deletion mutants of simian virus 40 (SV40) with lesions at the three DdeI sites near the 3' end of the early region were constructed. Mutants with deletions at 0.203 and 0.219 map units (mu) which did not change the large T antigen reading frame were viable. This extends slightly the upstream boundary for the location of viable mutants with deletions in the 3' end of the A gene. Mutants with frameshift deletions at 0.193 and 0.219 mu were nonviable. These are the first nonviable mutants with deletions in this portion of the A gene. None of the three nonviable mutants with deletions at 0.219 mu produced progeny viral DNA. These three mutants all used the alternate reading frame located in this portion of the SV40 early region. The mutant with a deletion at 0.193 mu, dlA2459, was positive for viral DNA replication and was defective for adenovirus helper function. All of these mutations were located in the portion of the SV40 large T antigen which has no homology to the polyoma T antigens. These results indicate that this portion of large T antigen is required for some late step in the viral growth cycle and suggest that adenovirus helper function is required for productive infection by SV40.  相似文献   

17.
Plant infections with cassava latent virus (CLV) were mediated by the Ti plasmid of Agrobacterium tumefaciens containing either monomeric or dimeric copies of the virus genome. The CLV DNAs caused typical symptoms when they were inoculated in Agrobacterium strains C58, LBA4404 and a virE mutant A1026, but not other Agrobacterium strains with mutations in other vir loci or an E. coli polA strain. Virus-specific DNA forms characteristic of normal CLV infections were found after such infection. Characterization of progeny CLV DNA from selected plants identified several infectious mutants. These were found to be small insertions and/or deletions in the coat protein gene of DNA 1 and in the intergenic region of DNA 2.  相似文献   

18.
DNA from the pre-S region of the duck hepatitis B virus (DHBV) genome was inserted into an open reading frame vector designed to give high-level expression in Escherichia coli. The resulting fusion protein contained the first 8 amino acids of beta-galactosidase, 86 amino acids of the DHBV pre-S region, and 219 amino acids of chloramphenicol acetyltransferase at the C terminus (beta-gal:pre-S:CAT). Rabbit antiserum against purified beta-gal:pre-S:CAT was used to identify pre-S-containing polypeptides in DHBV particles by Western blotting. A dominant species of 36 kilodaltons (kDa) was identified. Antiserum against the major 17-kDa DHBsAg polypeptide also reacted with the 36-kDa protein. This suggests that the DHBV envelope gene polypeptides share the same carboxyl terminus, but differ in the sites from which translation is initiated. N-linked carbohydrate was not detected on either the 17- or 36-kDa envelope proteins. Anti-beta-gal:pre-S:CAT abolished infectivity of the virus in an in vitro assay. Thus, the pre-S region is exposed on the surfaces of infectious virions and may be directly involved in binding of virus to host-cell receptors.  相似文献   

19.
A novel discrete mobile DNA element from Tn21 from the plasmid R100.1 is described, and its mobilization function was confirmed experimentally. In addition, the element behaves as a recombinase-active locus (tnpI) which facilitates insertions of antibiotic resistance genes as modules or cassettes at defined hot spots or integration sites. A similar tnpI sequence was detected by DNA hybridization in a series of beta-lactamase transposons and plasmids and localized on their physical maps. The genetic function of the locus cloned from Tn21 into pACYC184 was tested for conduction and integration into the plasmids R388 and pOX38Km, and the results suggested recombinase-integrase activity and recA independence. DNA sequence analysis of the tnpI locus revealed no inverted or direct terminal repeats or transposition features of class I and class II transposons. The coding capacity revealed three putative open reading frames encoding 131, 134, and 337 amino acids. Orf3 encoded a putative polypeptide product of 337 amino acids that shared highly significant identity with the carboxyl region of integrase proteins. A comparison and an alignment of the tnpI locus from Tn21 and its flanking sequences identified similar sequences in plasmids and in transposons. The alignment revealed discrete nucleotide changes in these tnpI-like loci and a conserved 3' and 5' GTTA/G hot spot as a duplicated target site. Our data confirm the remarkable ubiquity of tnpI associated with antibiotic resistance genes. We present a model of transposon modular evolution into more complex multiresistant units via tnpI and site-specific insertions, deletions, and DNA rearrangements at this locus.  相似文献   

20.
The structure of the polyoma virus (Py) integration site in the inducible LPT line of Py-transformed rat cells was determined by biochemical methods of gene mapping. LPT cell DNA was digested with various restriction enzymes. The digestion products were electrophoresed in agarose gels and transferred onto nitrocellulose sheets by Southern blotting. Fragments containing viral or cell DNA sequences, or both, were identified by hybridization with Py DNA or with a cloned flanking cell DNA probe. Cleavage of LPT DNA with enzymes that restrict the Py genome once generated linear Py DNA molecules and two fragments containing both cell and viral DNA sequences. Cleavage of LPT DNA with enzymes which do not restrict Py DNA generated series of fragments whose lengths were found to differ by increments of a whole Py genome; the smallest fragment in each series was found to be longer than the viral genome. These data indicate that LPT cultures contain Py insertions of various lengths integrated into the same chromosomal site in all the cells. The length heterogeneity of the viral insertions is due to the presence of 0, 1, 2, 3. . . Py genomes arranged in a direct tandem repeat within invariable sequences of viral DNA. Double-digestion experiments were also carried out with the above enzymes and with enzymes that cleave the Py genome at multiple sites. The data obtained in these experiments were used to construct a physical map of the integration site. This map showed that the early region of the virus remained intact even in the smallest insertion (which contains no whole duplicated genomes), whereas the late region was partially duplicated and split during integration. The smallest insertion is colinear with the Py physical map over a region including the entire Py genome and at least a part of the duplicated segment. This structure could give rise to nondefective circular viral DNA molecules by single homologous recombination events. Similar recombination events may occur at a higher frequency in the longer insertions, which include longer regions of homology, and may yield many more free viral genomes. The presence of these insertions in LPT cells could thus be one of the factors which account for the high inducibility of the LPT line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号