首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Volonté  R A Nichols  L A Greene 《BioTechniques》1992,12(6):854-8, 860-3
A slot-filtration method has been developed for the detection and quantitation of protein kinase and phosphatase activities. In this technique, after kinase-dependent phosphorylation or phosphatase-dependent dephosphorylation of different substrates, samples are transferred under vacuum onto nitrocellulose using a slot-blotting apparatus. Non-incorporated or released radioactivity is then removed by filtration and washing under vacuum. Quantitation is performed by scintillation or Cerenkov counting of the excised membrane slots. Application of the method to the assay of four different protein kinases (protein kinase N, cyclic AMP-dependent protein kinase and calcium/calmodulin-dependent protein kinases type I and type III) and one phosphatase is presented. A number of protein substrates with varying molecular masses and isoelectric points were found suitable for the slot-filtration technique. The method is applicable to impure as well as purified kinase and phosphatase preparations, can be used over a wide range of concentrations of substrates, has a very low background of nonspecific ATP binding and provides highly reproducible data. The slot-filtration method can also be adapted for use with ion-exchange paper, particularly for assays using peptides as substrates. The technique, with either nitrocellulose or ion-exchange paper, can be used to rapidly process large numbers of samples and can be simultaneously applied to direct comparison of different kinases, phosphatases and/or substrates in the same experiment.  相似文献   

2.
We report the development of a microtiter plate assay for protein kinase C. Reaction components and enzyme samples (protein kinase C purified by phosphatidylserine/cholesterol affinity or DEAE-Sephacel ion-exchange chromatography) were added to wells of a 96-well microtiter plate. The assay was started by the addition of [gamma-32P]ATP with a repeating pipet. After a 3-min incubation at 30 degrees C the wells were sampled six at a time with a 12-channel pipet and spotted onto phosphocellulose filter paper rectangles which were washed with tap water and acetone and counted for radioactivity. The microtiter plate method was more rapid than but gave results similar to those of a standard assay performed in plastic test tubes individually incubated in a 30 degrees C water bath. The microtiter plate procedure gave an intraassay (within one plate) variation of less than 9% and an interassay (between plates) variation of less than 5%. It was linear with time of incubation for 20 min and with amount of enzyme. This method can be used to expedite the assaying of column chromatography fractions for protein kinase C (and other kinase) activity.  相似文献   

3.
The actions of parathyroid hormone (PTH) on the renal cortex are thought to be mediated primarily by cAMP-dependent protein kinase (PKA) with some suggestion of a role for protein kinase C (PKC). However, present methods for assaying PKA and PKC in subcellular fractions are insensitive and require large amounts of protein. Recently, a sensitive method for measuring the activity of protein kinases has been reported. This method uses synthetic peptides as substrates and a tandem chromatographic procedure for isolating the phosphorylated peptides. We have adapted this method to study the effect of PTH on PKA and PKC activity using thin slices of rat renal cortex. PTH (250 nM) stimulated cytosolic PKA activity four- to fivefold within 30 s, and PKA activity was sustained for at least 5 min. PTH also rapidly stimulated PKC activity in the membrane fraction and decreased PKC activity in the cytosol. These changes were maximal at 30 s, but unlike changes in PKA, they declined rapidly thereafter. PTH significantly activated PKC only at concentrations of 10 nM or greater. This study demonstrates that PTH does activate PKC in renal tissue, although the duration of activation is much less than for PKA. It also demonstrates that a combination of synthetic peptides with tandem chromatography can be used as a sensitive assay procedure for protein kinase activity in biological samples.  相似文献   

4.
A nonradioactive dot-blot assay for protein tyrosine kinase activity   总被引:1,自引:0,他引:1  
A new procedure for the assay of protein tyrosine kinase, based on the detection of phosphorylated tyrosyl residues by using monoclonal antibodies to phosphotyrosine, is described. After incubation of a protein tyrosine kinase sample with the substrates poly-(GluNa,Tyr)4:1 and unlabeled ATP an aliquot of the reaction mixture is transferred to a polyvinylidene difluoride membrane. The extent of tyrosine phosphorylation is measured by probing the membrane with antiphosphotyrosine antibody followed by detection by the immunogold silver staining procedure. The signal is quantified by densitometry. The assay is linear with time and is quantitative in a wide range of sample protein concentrations. Its sensitivity allows the kinetic characterization of protein tyrosine kinases at low substrate concentrations, whereas on the other hand the avoidance of radioactivity enables the use of high ATP concentrations as well. Protein tyrosine kinase activities of human breast carcinomas and normal breast tissues measured with this method correlated well with the conventional assay, in which the incorporation of [32P]phosphate is measured by TCA precipitation and liquid scintillation counting. Compared to the latter, the new assay is at least as sensitive and accurate and harbors the advantage of the avoidance of radioactivity, thus enabling one to perform a large number of protein tyrosine kinase assays simultaneously.  相似文献   

5.
Since tyrosine-specific protein kinase (TPK) is much less abundant than Ser/Thr-specific kinases in cells, determination of TPK activity in crude cell extracts or column chromatography eluates has been difficult. This is compounded by the absence of a rapid, economical method for the separation of high endogenous protein phosphorylation background from exogenously added tyrosine-containing substrates. We have developed a new solid-phase assay, which provides high sensitivity and efficiency at a low cost for assaying the TPK activity of crude enzyme preparations. This assay utilizes immobilized tyrosine-containing synthetic polymers such as (Glu:Tyr, 4:1)n in polyacrylamide gels. The kinase reaction is started by adding crude enzyme solutions and [tau-32P]ATP-metal ion mixtures into microtiter-size wells made in the gels. After the phosphorylation reaction, the reaction mixtures are removed and the gels are prewashed in water followed by electrophoresis to completely remove free radioactive ATP. 32P incorporation into the immobilized TPK-specific substrate can be detected by autoradiography and quantitated by cutting the gel pieces and counting them with a liquid scintillation counter. The simple, rapid method should facilitate screening of TPK inhibitors and activators as well as examining the substrate specificity of TPKs. Other enzymes, including Ser/Thr-specific protein kinases, can also be analyzed by this technique.  相似文献   

6.
In addition to target efficacy, drug safety is a major requirement during the drug discovery process and is influenced by target specificity. Therefore, it is imperative that every new drug candidate be profiled against various liability panels that include protein kinases. Here, an effective methodology to streamline kinase inhibitor profiling is described. An accessible standardized profiling system for 112 protein kinases covering all branches of the kinome was developed. This approach consists of creating different sets of kinases and their corresponding substrates in multi-tube strips. The kinase stocks are pre-standardized for optimal kinase activity and used for inhibitor profiling using a bioluminescent ADP detection assay. We show that these strips can routinely generate inhibitor selectivity profiles for small or broad kinase family panels. Lipid kinases were also assembled in strip format and profiled together with protein kinases. We identified two specific PI3K inhibitors that have off-target effects on CK2 that were not reported before and would have been missed if compounds were not profiled against lipid and protein kinases simultaneously. To validate the accuracy of the data generated by this method, we confirmed that the inhibition potencies observed are consistent with published values produced by more complex technologies such as radioactivity assays.  相似文献   

7.
The ATP analog specificities of the homogeneous cGMP-dependent protein kinase and the catalytic subunit of cAMP-dependent protein kinase have been compared by the ability of 27 analogs to compete with ATP in the protein kinase reaction. Although the data suggest general similarities between the ATP sites of the two homologous cyclic-nucleotide-dependent protein kinases, specific differences especially in the adenine binding pocket are indicated. These differences in affinity suggest potentially useful ATP analog inhibitors of each kinase. For example, apparent autophosphorylation of the purified regulatory subunit of the cAMP-dependent protein kinase is blocked by nebularin triphosphate, suggesting that the phosphorylation is catalyzed by trace contamination of cGMP-dependent protein kinase. Some of the ATP analogs have also been tested using phosphorylase b kinase in order to compare this enzyme with the cyclic-nucleotide-dependent enzymes. All three protein kinases have high specificity for the purine moiety of ATP, and lower specificity for the ribose or triphosphate. The similarity between the ATP site of phosphorylase b kinase to that of the cyclic-nucleotide-dependent protein kinases suggests that it is related to them. The ATP analog specificities of enzymes examined in this study are different from those reported for several unrelated ATP-utilizing enzymes.  相似文献   

8.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

9.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

10.
Protein kinases form a large family of enzymes that play a major role in a number of live processes. The study of their action is important for the understanding of the transformation mechanisms and of the normal and pathological growth events. The quality of an enzyme assay is often the key point of an enzymatic study. It must be flexible and compatible with various experimental conditions, such as those for the purification process, the screening of inhibitors and the substrate specificity studies. As will be shown in the present review, two categories of substrates, peptidic and proteic, should be distinguished. The use of peptide substrates facilitates the determination of the recognition requirements of the enzyme and of the kinetic effects of even minute variations in their sequence. These linear peptide structures are assumed to mimic a complex interaction between the enzyme and a proteic substrate in which distant amino acids in the sequence are vicinal in the folded substrate. Less amenable to a systematic study, but probably more adequate to investigate the natural substrate of a given kinase, are the proteic substrates. Obviously the tools to measure protein kinase activities are not the same in these two cases. The main difficulty in assaying protein kinases is the use of labelles γ-ATP, mostly at large excess concentration, since the final product of the reaction has to be separated from the non-reacted labelled ATP. In the case of peptide substrates, the difficulty is to separate them from ATP basing on differences of molecular mass. Despite the efforts of many investigators to rely upon differences in solubility, in charges or in “affinity”, this separation, which is crucial for the assay, is still an unsolved experimental problem. Chromatographic, as well as electrophoretic assays appeared relatively late in this domain, and more work in assessing new methodologies might bring new breakthroughs in the next few years. Specific, simple and reliable kinase assays are still a major challenge. Their improvement will help to conduct specificity studies, to elucidate complex growth mechanisms in which they are involved and to discover more selective potent inihibitors.  相似文献   

11.
Desensitization of the beta-adrenergic receptor has been correlated in some cell systems with receptor phosphorylation. Various kinases have been implicated in these phosphorylation processes, including both cAMP-dependent protein kinase and protein kinase C. In the present study, we have utilized the protein sequence information obtained from the cloning of the mammalian beta-adrenergic receptor to prepare synthetic peptides corresponding to regions of the receptor which would be predicted to act as possible substrates for these kinases in vivo. Two of these receptor-derived peptides were found to serve as substrates for these protein kinases. A peptide corresponding to amino acids 257-264 of the beta-receptor is the preferred substrate for the cAMP-dependent protein kinase, while protein kinase C showed a marked preference for phosphorylation of a peptide corresponding to residues 341-351 of the beta-adrenergic receptor.  相似文献   

12.
Activation of the MAP kinase pathway by the protein kinase raf.   总被引:131,自引:0,他引:131  
Both MAP kinases and the protein kinase p74raf-1 are activated by many growth factors in a c-ras-dependent manner and by oncogenic p21ras. We were therefore interested in determining the relationship between MAP kinases and raf. The MAP kinase ERK2 is activated by expression of oncogenically activated raf, independently of cellular ras. Overexpressed p74raf-1 potentiates activation of ERK2 by EGF and TPA. MAP kinase kinase inactivated by phosphatase 2A treatment is phosphorylated and reactivated by incubation with p74raf-1 immunoprecipitated from phorbol ester-treated cells. We conclude that raf protein kinase is upstream of MAP kinases and is either a MAP kinase kinase kinase or a MAP kinase kinase kinase kinase.  相似文献   

13.
Calmodulin-dependent protein kinase II   总被引:1,自引:0,他引:1  
Three multifunctional protein kinases, cyclic AMP-dependent protein kinase, protein kinase C, and calmodulin-dependent protein kinase II, are involved in signal transduction in response to their respective second messengers, cyclic AMP, diacylglycerol, and Ca2+. This review will summarize the key findings on calmodulin-dependent protein kinase II.  相似文献   

14.
Regulation of protein kinase cascades by protein phosphatase 2A.   总被引:23,自引:0,他引:23  
Many protein kinases themselves are regulated by reversible phosphorylation. Upon cell stimulation, specific kinases are transiently phosphorylated and activated. Several of these protein kinases are substrates for protein phosphatase 2A (PP2A), and PP2A appears to be the major kinase phosphatase in eukaryotic cells that downregulates activated protein kinases. This idea is substantiated by the observation that some viral proteins and naturally occurring toxins target PP2A and modulate its activity. There is increasing evidence that PP2A activity is regulated by extracellular signals and during the cell cycle. Thus, PP2A is likely to play an important role in determining the activation kinetics of protein kinase cascades.  相似文献   

15.
Protein kinase B (PKB) is a member of the second-messenger regulated subfamily of protein kinases implicated in signalling downstream of growth factor and insulin receptor tyrosine kinases and phosphatidylinositol 3-kinase (PI 3-kinase). PKB is activated by phosphorylation in response to mitogens and survival factors. Membrane recruitment driven by lipid second-messengers derived from PI 3-kinase leads to PKB phosphorylation and activation by upstream kinases (PDK1 and an as yet identified protein kinase). Prolonged stimulation with growth factors results in nuclear translocation, providing evidence that PKB activation at the plasma membrane precedes its nuclear translocation and supporting a role for PKB in signalling from receptor tyrosine kinases to the nucleus.  相似文献   

16.
Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.  相似文献   

17.
18.
Protein kinases are a large family of enzymes heavily involved in signal transduction, regulation of metabolism, and control of cell growth and differentiation. These functions require precise recognition of widely diverse signals and substrates, and very detailed control of protein kinase activity. Large molecules interact primarily through recognition of surface features. Comparison of surfaces is complicated by both sequence diversity and conformational variability, including multiple possible rotameric states of side chains. We used a recently developed method of protein surface comparison to compare different serine/threonine and tyrosine kinases. As we have shown, two hydrophobic cores inside a protein kinase molecule are connected by a unique formation, called the "spine". It exists only in the active conformation of protein kinases and is dynamically disassembled during the inactivation process. Detection of such structures by any other method was not possible as the residues which comprise the spine do not form any sequence or 3D motifs in a traditional sense.  相似文献   

19.
The immune complex kinase assay is the most widely applied method to assess the catalytic activity of protein tyrosine kinases. It offers the advantage that the activity of a single selected enzyme can be determined, and that the enzyme activity can be normalized for the amount of enzyme in a parallel immunoblotting experiment. Here, we describe the use of the recently introduced isotope phosphorus-33 for the protein kinase assay. The lower energy of 33P, compared with the traditionally applied 32P, allows the simultaneous examination of the amount of enzyme with 125I-labeled antibodies. By analysing one and the same sample for both kinase activity and protein amount, the variation between parallel processed samples is avoided. Using this method, specific kinase activities can be calculated with high precision. The assay is particularly useful for the detection of cytokine and growth factor-induced activation of kinases, as changes in enzyme amounts by subcellular relocalization can be distinguished.  相似文献   

20.
Selection of target substrates by protein kinases is strongly influenced by the amino acid sequence surrounding the phosphoacceptor site. Identification of the preferred peptide phosphorylation motif for a given kinase permits the production of efficient peptide substrates and greatly simplifies the mapping of phosphorylation sites in protein substrates. Here we describe a combinatorial peptide library method that allows rapid generation of phosphorylation motifs for serine/threonine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号