首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urokinase-type plasminogen activator (uPA) gene expression in LLC-PK1 cells is induced by activation of cAMP-dependent protein kinase (cAMP-PK) or protein kinase C (PK-C). To determine whether protein phosphatases can also modulate uPA gene expression, we tested okadaic acid, a potent specific inhibitor of protein phosphatases 1 and 2A, in the presence and absence of cAMP-PK and PK-C activators. Okadaic acid by itself induced uPA mRNA accumulation. This induction was strongly attenuated by the inhibition of protein synthesis. In contrast, the inhibition of protein synthesis enhanced induction by 8-bromo-cAMP and only delayed induction by 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, down-regulation of PK-C by chronic treatment with TPA did not abrogate the okadaic acid-dependent induction. These results provide evidence for a novel signal transduction pathway leading to gene regulation that involves protein phosphorylation but is independent of both cAMP-PK and PK-C.  相似文献   

2.
3.
4.
We have examined the effect of heavy metals on the expression of two major groups of stress-induced proteins in fish cell lines: the 70 kDa heat-shock proteins (hsp70) and metallothioneins (MTs). The rainbow trout hepatoma (RTH) cell line synthesized the hsp70 protein in response to zinc and heat shock, while chinook salmon embryonic (CHSE) cells synthesized this protein in response to these inducers, as well as cadmium. The synthesis of this 70 kDa protein was correlated with the accumulation of hsp70 mRNA as measured by hybridization to a trout hsp70 gene probe. Heavy metals also induced the synthesis of MT in RTH cells. However, heat shock did not result in induction of MT and its mRNA. Unlike RTH cells, CHSE cells did not synthesize MT following exposure to cadmium or zinc. When these cells were treated with 5-azacytidine prior to heavy metal treatment, accumulation of MT mRNA was observed. Northern blot analysis of total RNA from 5-azacytidine treated CHSE cells, using a trout MT (tMT-B) cDNA probe, indicated that the time-course of induction and the maximal level of MT mRNA accumulation in response to cadmium and zinc paralleled that observed in RTH cells. Copper and dexamethasone were ineffective in inducing MT mRNA in 5-azacytidine-treated CHSE cells. These results indicate that MT is specifically induced in response to heavy metal treatment, whereas the synthesis of hsp70 appears to be a general stress response. Furthermore, MT is differentially regulated by heavy metals and dexamethasone in these cell lines and the expression of MT is cell-type-specific.  相似文献   

5.
6.
7.
The precise mechanistic role of the cAMP-dependent protein kinase (cAMP-PK) in cAMP-mediated gene induction remains unclear. Renal epithelial cell mutants were compared to the LLC-PK1 parental cell line for induction of the cAMP-responsive urokinase-type plasminogen activator (uPA) gene, as quantitated by the technique of mRNA solution hybridization. The FIB4 and FIB6 mutants, which possess less than 10% parental cAMP-PK catalytic (C) subunit activity, showed markedly diminished uPA mRNA induction in response to agents elevating intracellular cAMP such as the cAMP analogue 8-bromo-cAMP and the adenylate cyclase-stimulating hormones vasopressin and calcitonin. In contrast, the mutant cells responded to a similar or greater extent than the parental cells in terms of uPA mRNA induction following treatment with the Ca2+/phospholipid-dependent protein kinase activator phorbol 12-myristate 13-acetate (PMA). Elevation of intracellular cAMP was found to induce a translocation of the cAMP-PK C subunit from the perinuclear Golgi region to the nucleus in both parental and mutant cell lines, as shown by immunocytochemical techniques. Results argue for the role of the cAMP-PK C subunit activity and possibly nuclear translocation of the C subunit in cAMP-mediated uPA induction, which is mechanistically distinct from the PMA-stimulated response.  相似文献   

8.
Induction of urokinase-type plasminogen activator (uPA) in response to either reagents activating cAMP-dependent protein kinase (cAMP-PK) or the calcium ion phospholipid-dependent kinase (C-kinase) was compared in the LLC-PK1 and T47D cell lines. The two cell lines exhibited quantitatively different responses to calcitonin, to the phosphodiesterase inhibitor isobutylmethylxanthine, and to the adenylate cyclase activator forskolin. Both showed activation of cAMP-PK in response to all these reagents, with T47D cells displaying a greater extent of activation. T47D cells, however, failed to produce uPA in response to calcitonin, forskolin, or the cAMP analog 8-bromo-cAMP, whereas LLC-PK1 cells produced high levels of uPA in response to all these agents. Both cell lines responded to phorbol esters in terms of uPA induction, though to differing extents. Phorbol myristate acetate (PMA) was shown conclusively not to activate cAMP-PK in either cell line, even at concentrations 10-fold higher than those promoting maximal uPA induction. It was concluded that phorbol ester-mediated induction of uPA does not involve cAMP or cAMP-PK activation. These results are discussed in relation to proposed models concerning the role of cAMP-PK in uPA induction.  相似文献   

9.
HSP47 is an endoplasmic reticulum (ER)-resident molecular chaperone involved in collagen production. This study examined the stress-induced pattern of hsp47 gene expression in Xenopus cultured cells and embryos. Sequence analysis revealed that protein encoded by the hsp47 cDNA exhibited 70-77% identity with fish, avian and mammalian HSP47. In A6 kidney epithelial cells hsp47 mRNA and HSP47 were present constitutively and inducible by heat shock but not ER stressors including tunicamycin and A23187, both of which enhanced BiP mRNA. Furthermore A23187 treatment inhibited constitutive accumulation of hsp47 mRNA and retarded heat-induced accumulation of hsp47 and hsp70 mRNA. Interestingly, hsp47 gene expression but not hsp70 or BiP mRNA accumulation was enhanced by treatment with a procollagen-specific stressor, beta-aminopropionitrile. In Xenopus embryos hsp47 mRNA was present constitutively throughout development. In tailbud embryos hsp47 mRNA was enriched in tissues associated with collagen production including notochord, somites and head region. Heat shock-induced accumulation of hsp47 mRNA was enhanced primarily in embryonic tissues already exhibiting hsp47 mRNA accumulation. These studies suggest that the pattern of Xenopus hsp47 gene expression is similar to hsp70 in response to heat shock but also displays unique features including a response to a procollagen-specific stressor and preferential expression in collagen-containing tissues.  相似文献   

10.
11.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

12.
13.
14.
15.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

16.
D A Jans  B A Hemmings 《FEBS letters》1986,205(1):127-131
Mutants of the pig kidney cell line, LLC-PK1, affected in cAMP metabolism, were examined for cAMP-dependent protein kinase (cAMP-PK) activity and for cAMP-mediated induction of urokinase-type plasminogen activator (uPA). The FIB4 and FIB6 mutant cell lines possessed about 10% parental levels of cAMP-PK activity and concomitantly reduced uPA production (10-20% parental) in response to calcitonin, forskolin and 8-bromo cAMP. The FIB1, FIB2 and FIB5 mutant cell lines had about 70% parental levels of cAMP-PK and the synthesis of uPA was 40-60% parental. Thus, cAMP-mediated induction of uPA showed a dependence on the absolute levels of cAMP-PK. However, uPA synthesis in response to phorbol-12-myristate-13-acetate by all of the mutants was similar to parental, which indicates that enzyme induction mediated by phorbol esters does not involve cAMP or cAMP-PK.  相似文献   

17.
18.
Inhibition of protein synthesis stabilizes a number of mRNAs, but little is known about the mechanism. To understand the relationship between protein synthesis and mRNA stability, we studied the degradation of calcitonin-induced urokinase-type plasminogen activator (uPA) mRNA in LLC-PK cells. uPA mRNA became highly stable by pretreatment with either cycloheximide or pactamycin, and the stabilizing effect of cycloheximide treatment was time dependent with the full effect exerted by 60 min. Stabilization was also observed with histone H4 mRNA but only partially with c-myc mRNA. To further analyze, we developed a cell-free decay reaction system based on post-mitochondrial supernatant (PMS). In this system, uPA mRNA was completely stable when fractions were obtained from cells pretreated with cycloheximide, but very unstable in control fractions, paralleling uPA mRNA stability in intact cells. However, in contrast to uPA mRNA and the in vivo observation, histone H4 mRNA was unstable whether or not the cells were pretreated with cycloheximide. These results suggest that inhibition of protein synthesis stabilizes mRNAs in at least two different ways in LLC-PK1 cells. When PMS from cycloheximide/calcitonin-treated cells was mixed with PMS from untreated cells, uPA mRNA was not destabilized. This suggests that a putative labile factor responsible for uPA mRNA degradation is not a soluble protein.  相似文献   

19.
The heat shock response is a universal phenomenon and is among the most highly conserved cellular responses. However, BC-8, a rat histiocytoma, fails to mount a heat shock response unlike all other eukaryotic cells. In the absence of induction of heat shock proteins, apoptotic cell death is activated in BC-8 tumor cells upon heat shock. We demonstrate here that stable transformants of BC-8 tumor cells transfected with hsp70 cDNA constitutively express hsp70 protein and are transiently protected from heat induced apoptosis for 6-8 h. In addition heat stress induces CD95 gene expression in these tumor cells. There is a delay in CD95 expression in hsp70 transfected cells suggesting a correlation between the cell surface expression of CD95 and the time of induction of apoptosis in this tumor cell line. Also expression of CD95 antigen appears to inhibit the interaction between heat shock factors and heat shock elements in these cells resulting in the lack of heat shock response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号