首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations in the rabbit have indicated the existence of more than one N-acetyltransferase (EC 2.3.1.5). At least two enzymes, possibly isoenzymes, were partially characterized. The enzymes differed in their tissue distribution, substrate specificity, stability and pH characteristics. One of the enzymes was primarily associated with liver and gut and catalysed the acetylation of a wide range of drugs and foreign compounds, e.g. isoniazid, p-aminobenzoic acid, sulphamethazine and sulphadiazine. The activity of this enzyme corresponded to the well-characterized polymorphic trait of isoniazid acetylation, and determined whether individuals were classified as either ;rapid' or ;slow' acetylators. Another enzyme activity found in extrahepatic tissues readily catalysed the acetylation of p-aminobenzoic acid but was much less active towards isoniazid and sulphamethazine. The activity of this enzyme remained relatively constant from individual to individual. Studies in vitro and in vivo with both ;rapid' and ;slow' acetylator rabbits revealed that, for certain substrates, extrahepatic N-acetyltransferase contributes significantly to the total acetylating capacity of the individual. The possible significance and applicability of these findings to drug metabolism and acetylation polymorphism in man is discussed.  相似文献   

2.
Many arylamine and hydrazine drugs and xenobiotics are acetylated by N-acetyltransferase (NAT), a cytosolic enzymic activity which has a wide tissue distribution. Humans can be classified as either fast or slow acetylators on the basis of their ability to metabolise isoniazid or sulphamethazine. These are termed polymorphic substrates. The acetylation of other compounds does not vary amongst individuals, e.g., p-aminobenzoic acid, and are termed monomorphic substrates. NAT from human hepatic and non-hepatic tissues, viz., (i) liver, (ii) the hepatoma cell line HepG2, (iii) tonsil lymphocytes and (iv) the monocytic cell line U937 have been compared with respect to substrate specificity towards polymorphic and monomorphic substrates. The chromatographic and centrifugation behaviour of NAT from these sources has also been investigated. NAT from liver shows 2-fold greater activity towards sulphamethazine than towards p-aminobenzoic acid as substrate. All other cell types tested show at least 70-fold greater activity with p-aminobenzoic as substrate compared to sulphamethazine. NAT from HepG2 cells, U937 cells and tonsil lymphocytes migrates as a single peak during ion-exchange chromatography, whereas the liver NAT activity is separated into two peaks. NAT in HepG2 cells resembles extra-hepatic tissue NAT rather than NAT in liver. HepG2 cells do not therefore represent a good in vitro model for investigation of human metabolism of arylamines or hydrazines. The molecular weight of NAT from U937 cells has been determined by a combination of sucrose density gradient centrifugation and gel filtration to be 31,600 +/- 1200 daltons.  相似文献   

3.
Acetyltransferase was isolated by histone-Sepharose affinity chromatography from human cord blood red cells. The enzyme was detected only in very young red cells. The semipurified enzyme and [14C]acetyl-CoA were used to acetylate isolated Hb F tetramer and alpha and gamma subunits. The in vitro acetylated products were characterized by globin chain separation by CM-cellulose chromatography and tryptic peptide analysis by reverse-phase HPLC. Acetylation of both the gamma-chains and the alpha-chains could occur within the Hb F tetramer. Acetylation also could take place on intact subunits. It appears that some Hb FIC could be formed in the cells by utilizing Hb F or free gamma-chains as acetylation substrate.  相似文献   

4.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

5.
6.
7.
Two similar histone acetyltransferases have been separated from rat liver nuclei and purified 500-fold. Both enzymes also acetylate spermidine and spermine but diamines are not acetylated. Both enzymes preferentially acetylate histone 3; among the remaining histones H2A and H2B are good substrates, whereas H1 and histone 4 are poor substrates. Apparent Michaelis constants for spermidine were about 2 × 10?4m; apparent Michaelis constants for acetyl coenzyme A were 1.5 × 10?5 and 10?5m for enzymes A and B, respectively. At low concentrations DNA inhibits histone acetylation by enzyme A (50% inhibition at 25 μg/ml DNA). Enzyme B is relatively insensitive to DNA. This suggests the possibility of separate intranuclear localization of the two enzymes.  相似文献   

8.
9.
The lysosomal membrane enzyme acetyl-CoA:alpha-glucosaminide N-acetyltransferase catalyzes the transfer of the acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction appears to be a transmembrane process: the enzyme is acetylated on the outside of the lysosome, and the acetyl group is transferred across the membrane to the inside of the lysosome where it is used to acetylate glucosamine. To determine the reactive site residues involved in the acetylation reaction, lysosomal membranes were treated with various amino acid modification reagents and assayed for enzyme activity. Although four thiol modification reagents were examined, only one, p-chloromercuribenzoate inactivated the N-acetyltransferase. Thiol modification by p-chloromercuribenzoate did not appear to occur at the active site since inactivation was still observed in the presence of the substrate acetyl-CoA. N-Acetyltransferase could be inactivated by N-bromosuccinimide, even after pretreatment with reagents specific for tyrosine and tryptophan, suggesting that the modified residue is a histidine. Diethyl pyrocarbonate, another histidine modification reagent, could also inactivate the enzyme; this inactivation could be reversed by incubation with hydroxylamine. N-Bromosuccinimide and diethyl pyrocarbonate modifications appear to be at the active site of the enzyme since co-incubation with acetyl-CoA protects the N-acetyltransferase from inactivation. This protection is lost if glucosamine is also present. Pre-acetylated lysosomal membranes are also able to provide protection from N-bromosuccinimide inactivation, providing further evidence for a histidine moiety at the active site and for the existence of an acetyl-enzyme intermediate.  相似文献   

10.
A comparison of the tryptic peptide maps of serine hydroxymethyltransferase from sheep, human, ox livers and Escherichia coli revealed that the mammalian enzymes were similar, while the bacterial enzyme exhibited differences in the primary structure. N-terminus of the reduced carboxymethylated sheep liver enzyme was acetylated. Serine hydroxymethyltransferase was hydrolyzed with trypsin and fragments of peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase and ion-pair chromatography. The peptides were sequenced manually using the 4-N,N'-dimethyl aminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double coupling method. The tryptic peptides with 80% homology or above were aligned on the rabbit liver enzyme sequence.  相似文献   

11.
The lysosomal membrane enzyme acetyl-CoA: alpha-glucosaminide N-acetyltransferase catalyzes the transfer of an acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction mechanism was examined using highly purified lysosomal membranes from rat liver. The reaction was followed by measuring the acetylation of a monosaccharide acetyl acceptor, glucosamine. The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicated that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. Further evidence to support this mechanism was provided by characterization of the enzyme half-reactions. Membranes incubated with acetyl-CoA and [3H]CoA were found to produce acetyl-[3H]CoA. This exchange was optimal at pH values above 7.0. Treating membranes with [3H] acetyl-CoA resulted in the formation of an acetyl-enzyme intermediate. The acetyl group could then be transferred to glucosamine, forming [3H]N-acetylglucosamine. The transfer of the acetyl group from the enzyme to glucosamine was optimal between pH 4 and 5. The results suggest that acetyl-CoA does not cross the lysosomal membrane. Instead, the enzyme is acetylated on the cytoplasmic side of the lysosome and the acetyl group is then transferred to the inside where it is used to acetylate heparan sulfate.  相似文献   

12.
《The Journal of cell biology》1995,129(5):1301-1310
In Tetrahymena, at least 17 distinct microtubule structures are assembled from a single primary sequence type of alpha- and beta- tubulin heterodimer, precluding distinctions among microtubular systems based on tubulin primary sequence isotypes. Tetrahymena tubulins also are modified by several types of posttranslational reactions including acetylation of alpha-tubulin at lysine 40, a modification found in most eukaryotes. In Tetrahymena, axonemal alpha-tubulin and numerous other microtubules are acetylated. We completely replaced the single type of alpha-tubulin gene in the macronucleus with a version encoding arginine instead of lysine 40 and therefore cannot be acetylated at this position. No acetylated tubulin was detectable in these transformants using a monoclonal antibody specific for acetylated lysine 40. Surprisingly, mutants lacking detectable acetylated tubulin are indistinguishable from wild-type cells. Thus, acetylation of alpha- tubulin at lysine 40 is non-essential in Tetrahymena. In addition, isoelectric focusing gel analysis of axonemal tubulin from cells unable to acetylate alpha-tubulin leads us to conclude that: (a) most or all ciliary alpha-tubulin is acetylated, (b) other lysines cannot be acetylated to compensate for loss of acetylation at lysine 40, and (c) acetylated alpha-tubulin molecules in wild-type cells contain one or more additional charge-altering modifications.  相似文献   

13.
14.
N-terminal protein acetylation is common in eukaryotes and halophilic archaea, but very rare in bacteria. We demonstrate that some of the most abundant proteins present in the crenarchaeote Sulfolobus solfataricus, including subunits of the thermosome, proteosome and ribosome, are acetylated at the N-terminus. Modification was observed at the N-terminal residues serine, alanine, threonine and methionine-glutamate. A conserved archaeal protein, ssArd1, was cloned and expressed in Escherichia coli, and shown to acetylate the same N-terminal sequences in vitro. The specific activity of ssArd1 is sensitive to protein structure in addition to sequence context. The crenarchaeota and euryarchaeota apparently differ in respect of the frequency of acetylation of Met-Glu termini, which appears much more common in S. solfataricus. This sequence is acetylated by the related Nat3 acetylase in eukarya. ssArd1 thus has a relaxed sequence specificity compared with the eukaryotic N-acetyl transferases, and may represent an ancestral form of the enzyme. This represents another example where archaeal molecular biology resembles that in eukaryotes rather than bacteria.  相似文献   

15.
N-lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine residue in the active site. In the purple photosynthetic α-proteobacterium Rhodopseudomonas palustris, two protein acetyltransferases (RpPat and the newly identified RpKatA) and two deacetylases (RpLdaA and RpSrtN) regulate the activities of AMP-forming acyl-CoA synthetases. In this work, we used LC/MS/MS to identify other proteins regulated by the N-lysine acetylation/deacetylation system of this bacterium. Of the 24 putative acetylated proteins identified, 14 were identified more often in a strain lacking both deacetylases. Nine of these proteins were members of the AMP-forming acyl-CoA synthetase family. RpPat acetylated all nine of the acyl-CoA synthetases identified by this work, and RpLdaA deacetylated eight of them. In all cases, acetylation occurred at the conserved lysine residue in the active site, and acetylation decreased activity of the enzymes by >70%. Our results show that many different AMP-forming acyl-CoA synthetases are regulated by N-lysine acetylation. Five non-acyl-CoA synthetases were identified as possibly acetylated, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Rpa1177, a putative 4-oxalocrotonate tautomerase. Neither RpPat nor RpKatA acetylated either of these proteins in vitro. It has been reported that Salmonella enterica Pat (SePat) can acetylate a number of metabolic enzymes, including GAPDH, but we were unable to confirm this claim, suggesting that the substrate range of SePat is not as broad as suggested previously.  相似文献   

16.
Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations.  相似文献   

17.
Acetyldithio-CoA has been shown to be a competent nucleophilic substrate but not an electrophilic substrate for the Claisen condensation catalyzed by thiolase, which normally dimerizes acetyl (Ac)-CoA to acetoacetyl-CoA. Acting as the nucleophile, the kcat/Km for dithioacetyl-CoA is comparable to that of Ac-CoA, the normal substrate. With acetoacetyl-pantetheine acetylating the thiolase to provide the electrophile, the kcat and kcat/Km for the Claisen condensation are 2.1 s-1 and 8.3 X 10(4) M-1 s-1, respectively. The product of the reaction is 3-ketobutyryldithio-CoA. The 3-ketobutyryldithio-CoA has a spectrally determined pKa of 6.55 and the enolate has a lambda max of 357 nm, epsilon 357 = 21,000 cm-1 M-1. Product analysis indicates that acetyldithio-CoA does not serve as the electrophilic partner in the enzymic condensation. This failure is attributed to the inability demonstrated in this study of acetyldithio-CoA to thioacetylate the active site Cys89 of the Zoogloea ramigera thiolase. 1H NMR studies in D2O indicate that thiolase catalyzes the exchange of the alpha-hydrogens, without Cys89 being acetylated, with a rate of 0.63 +/- 0.25 s-1. In the presence of a large excess of acetoacetyl-pantetheine, present to acetylate Cys89 and prevent the thiolytic back reaction, solvent exchange of the alpha-hydrogens can still be detected by observing the isotope-shifted 13C NMR spectrum of [2-13C]acetyldithio-CoA. The exchange of the acetyldithio-CoA alpha-hydrogens with solvent promoted by the acetylated enzyme, must proceed at a rate comparable to that of the condensation reaction.  相似文献   

18.
Citrate lyase (EC 4.1.3.6) was purified 38-fold from cell-free extracts of Streptococcus diacetilactis. The enzyme was homogeneous in analytical ultracentrifugation and polyacrylamide gel electrophoresis The final enzyme preparation contained acetate: HS-citrate lyase ligase—an acetylating enzyme which converts inactive HS-citrate lyase into enzymatically active acetyl-S-citrate lyase. This enzyme activity was purified 25-fold over the crude extract and seemed to be associated with citrate lyase. Partially purified citrate lyase from Leuconostoc citrovorum contained also its acetylating enzyme. Purified citrate lyases from Klebsiella aerogenes and Rhodopseudomonas gelatinosa were devoid of acetylating enzyme activity. The HS-form of citrate lyase from S. diacetilactis was completely acetylated and hence activated by incubation with ATP and acetate for 25 min at 25° C. The enzyme did not acetylate the HS-lyases from R. gelatinosa and K. aerogenes. In contrast to the citrate lyases from R. gelatinosa and K. aerogenes the enzymes from S. diacetilactis and L. citrovorum showed onlya very weak reaction inactivation. It is assumed that this is due to the association of the acetylating enzymes with these lyases.  相似文献   

19.
Arylamine N-acetyltransferase (NAT) enzymes are widespread in nature. They serve to acetylate xenobiotics and/or endogenous substrates using acetyl coenzyme A (CoA) as a cofactor. Conservation of the architecture of the NAT enzyme family from mammals to bacteria has been demonstrated by a series of prokaryotic NAT structures, together with the recently reported structure of human NAT1. We report here the cloning, purification, kinetic characterisation and crystallographic structure determination of NAT from Mycobacterium marinum, a close relative of the pathogenic Mycobacterium tuberculosis. We have also determined the structure of M. marinum NAT in complex with CoA, shedding the first light on cofactor recognition in prokaryotic NATs. Surprisingly, the principal CoA recognition site in M. marinum NAT is located some 30 Å from the site of CoA recognition in the recently deposited structure of human NAT2 bound to CoA. The structure explains the Ping-Pong Bi-Bi reaction mechanism of NAT enzymes and suggests mechanisms by which the acetylated enzyme intermediate may be protected. Recognition of CoA in a much wider groove in prokaryotic NATs suggests that this subfamily may accommodate larger substrates than is the case for human NATs and may assist in the identification of potential endogenous substrates. It also suggests the cofactor-binding site as a unique subsite to target in drug design directed against NAT in mycobacteria.  相似文献   

20.
Abstract: In situ acetylation of homocholine by slices of rat cerebral cortex was about 34% of the in situ acetylation of choline. Acetylhomocholine synthesized by the cerebral cortical slices was distributed in the same subcellular fractions as was acetylcholine (ACh), although the relative distribution of acetylhomocholine and ACh between nerve-ending-free and nerve-ending-bound stores was different. Cerebellar slices acetylated homocholine <10% as well as did cerebral cortical slices. In vitro , choline acetyltransferase (ChAT; EC 2.3.1.1.6) either partially purified from whole rat brain, solubilized from lysed synaptosomes, or in a synaptosomal membrane-associated form, did not acetylate homocholine at an appreciable rate. Under conditions of alkaline pH, an appreciable in vitro rate of homocholine acetylation by preparations of lysed synaptosomes was detected. However, analysis of this acetylation showed it not to be the result of ChAT catalysis and unlikely to occur by the same mechanism as that responsible for acetylation of homocholine in situ : the acetylation was not inhibited by ChAT inhibitors and occurred equally in the presence of preparations of lysed cerebral cortical or cerebellar synaptosomes. It is concluded that in situ acetylation of homocholine is probably catalyzed by ChAT and that acetylhomocholine is subsequently stored in the same subcellular sites as is ACh; the inability to detect ChAT-catalyzed acetylation of homocholine in vitro might arise as an artefact of the procedures employed in isolation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号