首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In contrast to positive signaling leading to proliferation, the mechanisms involved in negative signaling culminating in apoptosis after B cell Ag receptor (BCR) ligation have received little study. We find that apoptosis induced by BCR cross-linking on EBV-negative mature and immature human B cell lines involves the following sequential, required events: a cyclosporin A-inhibitable, likely calcineurin-mediated step; and activation of caspase-2, -3, and -9. Caspase-2 is activated early and plays a major role in the apoptotic pathway, while caspase-9 is activated later in the apoptotic pathway and most likely functions to amplify the apoptotic signal. Caspase-8 and -1, which are activated by ligation of the CD95 and TNF-R1 death receptors, are not involved. Apoptosis induced by BCR ligation thus proceeds via a previously unreported intracellular signaling pathway.  相似文献   

2.
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.  相似文献   

3.

Background

In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells.

Methods

Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate.

Results

We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571.

Conclusions

All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.  相似文献   

4.
Many studies have shown that FcgammaRIIB is a negative regulator of B cell receptor signaling, and even though FcgammaRIIB is expressed through all developmental stages of the B cell lineage, its involvement in pre-B cell receptor (pre-BCR) signaling has not been examined. To investigate FcgammaRIIB function at the pre-B cell stage, we have established pre-BCR positive pre-B cell lines from normal mice and FcgammaRIIB-deficient mice, named PreBR and Fcgamma(-/-)PreBR, respectively. These cell lines are able to differentiate into immature B cells in vitro by removal of IL-7. In PreBR, apoptosis was moderately induced by F(ab')(2) anti-mu Ab, but not by intact anti-mu Ab. Phosphorylation of SH2-containing inositol 5-phosphatase (SHIP) and Dok, which are involved in FcgammaRIIB signaling, was induced by anti-mu cross-linking in PreBR. In contrast, apoptosis was strongly induced by both the F(ab')(2) and intact anti-mu Abs in Fcgamma(-/-)PreBR, and the level of phosphorylation of SHIP or Dok was much lower in Fcgamma(-/-)PreBR than those observed in PreBR. Restoration of FcgammaRIIB to Fcgamma(-/-)PreBR followed by anti-mu cross-linking blocked severe apoptosis, and up-regulated SHIP and Dok phosphorylation. The results demonstrate that FcgammaRIIB negatively regulates pre-BCR-mediated signaling for apoptosis.  相似文献   

5.

Background  

Cytochalasin B does not directly activate the oxygen-radical-producing NADPH oxidase activity of neutrophils but transfers desensitized G-protein coupled receptors (GPCR) into an active signaling state by uncoupling GCPR from the cytoskeleton. The receptor uncoupling results in respiratory burst activity when signals generated by reactivated formyl peptide receptors trigger the NADPH-oxidase to produce superoxide anions.  相似文献   

6.
Members of the inhibitor of apoptosis protein (IAP) family can inhibit caspases and cell death in a variety of insect and vertebrate systems. Drosophila IAP1 (DIAP1) inhibits cell death to facilitate normal embryonic development. Here, using RNA interference, we showed that down-regulation of DIAP1 is sufficient to induce cell death in Drosophila S2 cells. Although this cell death process was accompanied by elevated caspase activity, this activation was not essential for cell death. We found that DIAP1 depletion-induced cell death was strongly suppressed by a reduction in the Drosophila caspase DRONC or the Drosophila apoptotic protease-activating factor-1 (Apaf-1) homolog, Dark. RNA interference studies in Drosophila embryos also demonstrated that the action of Dark is epistatic to that of DIAP1 in this cell death pathway. The cell death caused by down-regulation of DIAP1 was accelerated by overexpression of DRONC and Dark, and a caspase-inactive mutant form of DRONC could functionally substitute the wild-type DRONC in accelerating cell death. These results suggest the existence of a novel mechanism for cell death signaling in Drosophila that is mediated by DRONC and Dark.  相似文献   

7.
Microglia play an important role in neuronal protection and damage. However, the molecular and cellular relationship between microglia and neurons is unclear. We carried out a prospective study to detect that activation of BV2 microglia induced PC12 cell apoptosis in vitro through the TLR4/adapter protein myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway. BV2 microglia were treated with different concentrations of LPS for 24 h. Western blot was utilized to detect the expression of TLR4 and the downstream signaling pathway. The level of inflammatory mediator was quantified using a specific ELISA kit. The supernatant of 10 μg/ml LPS-treated BV2 cells was used as conditioned medium (CM). PC12 cells were co-culture with CM for 24 h. Cell viability was determined by MTT assay and cell apoptosis was tested by flow cytometry. BV2 microglia were treated with 10, 20, or 30 μg/ml LPS for 24 h. The expression of TLR4, MyD88, and NF-κB significantly increased. When PC12 cells were co-cultured with CM for 24 h, cell viability decreased. CM up-regulated the Bax level and down-regulated the Bcl-2 protein level in PC12 cells. PC12 cells pretreated with interleukin-1 receptor antagonist (IL-1RA) for 30 min, significantly alleviated CM-induced PC12 cell apoptosis. These results suggest that BV2 microglia activated by LPS triggered TLR4/MyD88/NF-κB signaling pathway that induced the release of IL-1β and could participate in the PC12 cells injury.  相似文献   

8.
Evolution of the human killer cell inhibitory receptor family   总被引:4,自引:0,他引:4  
Phylogenetic analysis of different domains of human natural killer cell inhibitory receptors (KIR) implicated both intragenic duplication and deletion of exons and interlocus recombination in the evolution of these receptors. In phylogenies of the extracellular immunoglobulin (Ig) superfamily C2-set domains and of the pre-membrane (PM) domain, KIR receptors having two C2-set domains and those having three such domains tended to form separate clusters. However, the phylogenies of the transmembrane (TM) and cytoplasmic (CYT) domains showed quite different topologies, suggesting that major sites of interlocus recombination have been between exon 6 (encoding PM) and exon 7 (encoding TM) and between exon 7 and exons 8-9 (encoding CYT). Examination of the pattern of nucleotide substitution in the exons encoding Ig C2-set domains supported the hypothesis that positive Darwinian selection has acted to diversify the residues within these domains that are involved in contact with class I MHC molecules.  相似文献   

9.
The trans-sialidase, a modified sialidase that transfers sialyl residues among macromolecules, is a unique enzymatic activity expressed by some parasitic trypanosomes being essential for their survival in the mammalian host and/or in the insect vector. The enzyme from Trypanosoma cruzi, the agent of Chagas disease, is found in blood and able to act far from the infection site by inducing apoptosis in cells from the immune system. A central and still unsolved question is whether trans-sialidase-mediated addition or removal of sialic acid to/from host acceptor molecules is the event associated with the apoptosis induced by the enzyme. Here we show that lactitol, a competitive inhibitor that precluded the transference of the sialyl residue to endogenous acceptors but not the hydrolase activity of the enzyme, prevented ex vivo and in vivo the apoptosis caused by the trans-sialidase. By lectin histochemistry, the transference of sialyl residue to the cell surface was demonstrated in vivo and found associated with the apoptosis induction. The sialylation of the CD43 mucin, a key molecule involved in trans-sialidase-apoptotic process, was readily detected and also prevented by lactitol on thymocytes. Therefore, lesions induced by trans-sialidase on the immune system are due to the sialylation of endogenous acceptor molecules.  相似文献   

10.
A microbial polysaccharide (glucuronoxylomannan (GXM)) exerts potent immunosuppression by direct engagement to immunoinhibitory receptor FcgammaRIIB. Activation of FcgammaRIIB by GXM leads to the recruitment and phosphorylation of SHIP that prevents IkappaBalpha activation. The FcgammaRIIB blockade inhibits GXM-induced IL-10 production and induces TNF-alpha secretion. GXM quenches LPS-induced TNF-alpha release via FcgammaRIIB. The addition of mAb to GXM reverses GXM-induced immunosuppression by shifting recognition from FcgammaRIIB to FcgammaRIIA. These findings indicate a novel mechanism by which microbial products can impair immune function through direct stimulation of an inhibitory receptor. Furthermore, our observations provide a new mechanism for the ability of specific Ab to reverse the immune inhibitory effects of certain microbial products.  相似文献   

11.
Two members of the recently identified FcR homolog (FcRH) family in mice demonstrate preferential B cell expression. One of these, FcRH3, encodes a type I transmembrane protein with five extracellular Ig domains and a cytoplasmic tail with a consensus ITIM and a noncanonical ITAM. Analysis of full-length cDNAs from five different mouse strains defines two FcRH3 alleles. A panel of FcRH3-specific mAbs was generated to define its expression pattern and functional potential on B lineage cells. Although poorly detected on the majority of bone marrow or peripheral blood cells, FcRH3 was readily identified on splenic marginal zone (MZ) and MZ precursor B cells, but not on the bulk of newly formed B cells, follicular B cells, germinal center B cells, and plasma cells. In the peritoneal cavity, FcRH3 was found on B1 cells, and not on the majority of B2 cells. Consistent with its possession of an ITIM and ITAM-like sequence, FcRH3 was tyrosine phosphorylated following pervanadate treatment, and its coligation with the BCR inhibited calcium mobilization. These results suggest FcRH3 is a novel immunoregulatory marker of MZ and B1 B lineage cells.  相似文献   

12.
B cell receptor (BCR)-mediated apoptosis plays a key role in the negative selection (deletion) of autoreactive B cells. Mechanisms of BCR-mediated apoptosis have been widely studied in cell lines representing both immature (bone marrow) and mature (germinal center) B cells. However, there is much inconsistency and controversy concerning the possible mechanisms of BCR-mediated apoptosis, which may reflect differences in the origin or the maturational stage of the cell line used. Based on recent studies, collapse of mitochondrial membrane potential (Delta Psi m) seems to be an essential event for BCR-mediated apoptosis in both mature and immature cells. The collapse of Delta Psi m is dependent on the synthesis of new proteins, which are involved in the permeability change of mitochondrial membranes. Mitochondrial dysfunction induces activation of caspases, cysteine proteases, which play a central role in apoptosis. However, instead of caspases, other effector proteases, such as cathepsins or calpains, may also be responsible for the organized destruction of cell components seen during BCR-mediated apoptosis.  相似文献   

13.
The anti-apoptotic protein HAX-1 has been proposed to modulate mitochondrial membrane potential, calcium signaling and actin remodeling. HAX-1 mutation or deficiency results in severe congenital neutropenia (SCN), loss of lymphocytes and neurological impairments by largely unknown mechanisms. Here, we demonstrate that the activation of c-Abl kinase in response to oxidative or genotoxic stress is dependent on HAX-1 association. Cellular reactive oxygen species (ROS) accumulation is inhibited by HAX-1-dependent c-Abl activation, which greatly contributes to the antiapoptotic role of HAX-1 in stress. HAX-1 (Q190X), a loss-of-function mutant responsible for SCN, fails to bind with and activate c-Abl, leading to dysregulated cellular ROS levels, damaged mitochondrial membrane potential and eventually apoptosis. The extensive apoptosis of lymphocytes and neurons in Hax-1-deficient mice could also be remarkably suppressed by c-Abl activation. These findings underline the important roles of ROS clearance in HAX-1-mediated anti-apoptosis by c-Abl kinase activation, providing new insight into the pathology and treatment of HAX-1-related hereditary disease or tumorigenesis.Subject terms: Apoptosis, Kinases  相似文献   

14.
Upon viral infection, cells undergo apoptosis as a defense against viral replication. Viruses, in turn, have evolved elaborate mechanisms to subvert apoptotic processes. Here, we report that a novel viral mitochondrial anti-apoptotic protein (vMAP) of murine gamma-herpesvirus 68 (gammaHV-68) interacts with Bcl-2 and voltage-dependent anion channel 1 (VDAC1) in a genetically separable manner. The N-terminal region of vMAP interacted with Bcl-2, and this interaction markedly increased not only Bcl-2 recruitment to mitochondria but also its avidity for BH3-only pro-apoptotic proteins, thereby suppressing Bax mitochondrial translocation and activation. In addition, the central and C-terminal hydrophobic regions of vMAP interacted with VDAC1. Consequently, these interactions resulted in the effective inhibition of cytochrome c release, leading to the comprehensive inhibition of mitochondrion-mediated apoptosis. Finally, vMAP gene was required for efficient gammaHV-68 lytic replication in normal cells, but not in mitochondrial apoptosis-deficient cells. These results demonstrate that gammaHV-68 vMAP independently targets two important regulators of mitochondrial apoptosis-mediated intracellular innate immunity, allowing efficient viral lytic replication.  相似文献   

15.
Many developing B lymphocytes are deleted by apoptosis. However, the mechanism signaling their demise remains poorly understood. Like mammals, chicken B cells are selected during their development; >95% of the cells in the bursa of Fabricius die without entering the secondary immune system. The molecule chB6 (Bu-1) has been used as a marker to identify B cells in the chicken. ChB6 is a type I transmembrane glycoprotein whose function is enigmatic. We have provided evidence that chB6 can induce a rapid form of cell death exhibiting characteristics of apoptosis. Here we further examine cell death induced by chB6 in a transfected mouse cell line. ChB6 is shown to cause apoptosis in this cell line as detected by a TUNEL assay for DNA fragmentation. This apoptosis is subject to regulation by signals from growth factor or by Bcl-x(L). Furthermore, we show that Ab binding to chB6 leads to cleavage of caspase 8, caspase 3, and poly(ADP ribose) polymerase. Overall, these data support the hypothesis that chB6 is a novel death receptor on avian B cells.  相似文献   

16.
Antibody-dependent cellular cytotoxicity is initiated when low affinity Fc receptors (Fc gamma R type III/CD16) on NK cells bind to sensitized (i.e., antibody coated) target cells. Fc gamma R cross-linkage induces the activation of phospholipase C (PLC), which hydrolyses membrane phosphoinositides, generating inositol-1,4,5-trisphosphate and sn-1,2-diacylglycerol as second messengers. However, the mechanism that couples Fc gamma R stimulation to PLC activation remains unknown. In this study, we investigated whether the Fc gamma R is coupled to PLC via a guanine nucleotide-binding (G) protein or an alternative pathway. Stimulation of electropermeabilized human NK cells with GTP gamma S induced inositol phosphate (IP) release, indicating the presence of a G protein-linked PLC activity in these cells. However, stimulation with both anti-Fc gamma R mAb and GTP gamma S provoked additive rather than synergistic increases in IP formation. Furthermore, exogenous GDP strongly inhibited GTP gamma S-stimulated IP release, but failed to inhibit the response to anti-Fc gamma R mAb stimulation. These results suggested GTP gamma S and anti-Fc gamma R mAb activated PLC through distinct regulatory mechanisms, and that Fc gamma R was not linked to PLC via a G protein. Hence, an alternative transduction mechanism for Fc gamma R-PLC coupling was considered. Antibody-mediated Fc gamma R cross-linkage was shown to rapidly stimulate tyrosine phosphorylation of multiple proteins in NK cells. Pretreatment with the tyrosine kinase inhibitor, herbimycin A, inhibited these phosphorylation events and disrupted the coupling between Fc gamma R ligation and PLC activation. These observations suggest that Fc gamma R in NK cell is coupled to PLC via a G protein-independent, but tyrosine kinase-dependent pathway.  相似文献   

17.
In this study, in order to investigate the p53-independent function of p14ARF, we established p14ARF-inducible clones in the p53-deficient HCT cell line using the doxycycline-inducible expression system. A strong cell growth inhibition and G1/S arrest were observed after doxycycline induction in p53-/-HCT cells, and the cells also exhibited an obvious decrease of DNA synthesis. We further examined if the MEK/ERK pathway is involved in the G1 arrest induced by p14ARF in p53-/-HCT cells. The results indicate that ERK1/2 and p21 were activated upon p14ARF induction. Totally, the functional roles of ERK and p21 for ARF in p53-independent tumor suppression were demonstrated.  相似文献   

18.
c-Abl is a nonreceptor tyrosine kinase that we have recently linked to growth factor receptor signaling. The c-Abl kinase is ubiquitously expressed and localizes to the cytoplasm, plasma membrane, cytoskeleton, and nucleus. Thus, c-Abl may regulate signaling processes in multiple subcellular compartments. Targeted deletion or mutation of c-Abl in mice results in a variety of phenotypes, including splenic and thymic atrophy and lymphopenia. Additionally, lymphocytes isolated from specific compartments of c-Abl mutant mice have reduced responses to a variety of stimuli and an increased susceptibility to apoptosis following growth factor deprivation. Despite these observations, little is known regarding the signaling mechanisms responsible for these phenotypes. We report here that splenic B cells from c-Abl-deficient mice are hyporesponsive to the proliferative effects of B cell Ag receptor (BCR) stimulation. The c-Abl kinase activity and protein levels are elevated in the cytosol following activation of the BCR in B cell lines. We show that c-Abl associates with and phosphorylates the BCR coreceptor CD19, and that c-Abl and CD19 colocalize in lipid membrane rafts. These data suggest a role for c-Abl in the regulation of B cell proliferation downstream of the BCR, possibly through interactions with CD19.  相似文献   

19.
The ontogenic appearance and lymphoid tissue distribution of the murine B cell IgE FcR (Fc epsilon R) was examined. Flow cytometry was utilized to study the expression of the Fc epsilon R on splenic B cells from mice of increasing age, as well as B cells from various lymphoid organs. A large panel of B cell tumors was also screened for the presence of the Fc epsilon R. The results demonstrate that the Fc epsilon R appears very late in B cell development, and is preceded in appearance even by IgD. In adult animals, the Fc epsilon R was found to be expressed on virtually all mature IgM, IgD bearing B cells, whether taken from the spleen, lymph nodes, or Peyer's patches. Further examination showed that B cells which had switched to express an isotype other than IgD, appeared to no longer display the Fc epsilon R. When surveying a variety of B cell tumors, the Fc epsilon R was found to be present on WEHI 279, an IgM, IgD-bearing lymphoma. The receptor was not found on pre-B cell, immature B cell, switched B cell, or secreting B cell tumors. Taken together, these results indicate that the B cell Fc epsilon R is expressed predominantly on mature, virgin B cells, and is lost after activation and switching.  相似文献   

20.
Short-term culture of activated T cells with IL-2 renders them highly susceptible to apoptotic death triggered by TCR cross-linking. Activation-induced apoptosis is contingent upon caspase activation and this is mediated primarily by Fas/Fas ligand (FasL) interactions that, in turn, are optimized by p38 mitogen-activated protein kinase (MAPK)-regulated signals. Although T cells from mice bearing mutations in Fas (lpr) or FasL (gld) are more resistant to activation-induced cell death (AICD) than normal T cells, a significant proportion of CD8(+) T cells and to a lesser extent CD4(+) T cells from mutant mice die after TCR religation. Little is known about this Fas-independent death process. In this study, we demonstrate that AICD in lpr and gld CD4(+) and CD8(+) T cells occurs predominantly by a novel mechanism that is TNF-alpha-, caspase-, and p38 MAPK-independent and has morphologic features more consistent with oncosis/primary necrosis than apoptosis. A related Fas- and caspase-independent, nonapoptotic death process is revealed in wild-type (WT) CD8(+) T cell blasts following TCR ligation and treatment with caspase inhibitors, the p38 MAPK inhibitor, SB203580, or neutralizing anti-FasL mAb. In parallel studies with WT CD4(+) T cells, two minor pathways leading to nonapoptotic, caspase-independent AICD were identified, one contingent upon Fas ligation and p38 MAPK activation and the other Fas- and p38 MAPK-independent. These data indicate that TCR ligation can activate nonapoptotic death programs in WT CD8(+) and CD8(+) T blasts that normally are masked by Fas-mediated caspase activation. Selective use of potentially proinflammatory oncotic death programs by activated lpr and gld T cells may be an etiologic factor in autosensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号