首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To apply scanning electron microscopy, image analysis and a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to pulsed-plasma gas discharges (PPGD). METHODS AND RESULTS: The fluorescent redox probe 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) was used for enumerating actively respiring cells of Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Salmonella enterica serovar Typhimurium that were suspended in sterile water at 4 degrees C and exposed to separate PPGD and heat treatments. While there was good agreement between use of respiratory staining (RS) and direct-selective agar plate counting (PC) for enumerating untreated bacteria, there were c. 1 and 3 log-unit differences in surviving cell numbers per millilitre for test organisms subjected to PPGD and heat treatments respectively, when enumerated by these different viability indicators. PPGD-treated bacteria were markedly altered at the cellular level when examined by scanning electron microscopy. CONCLUSIONS: Use of this RS method revealed that substantial subpopulations of test bacteria rendered incapable of forming colonies by separate PPGD and heat treatments may remain metabolically active. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of this RS method offers interesting perspectives on assessing established and novel microbial inactivation methods, and may also provide a better understanding of mechanisms involved in microbial inactivation induced by high-intensity PPGD treatments.  相似文献   

2.
AIMS: The objective was to investigate the occurrence of sublethal injury in Escherichia coli by pulsed electric fields (PEF) at different pH values. METHODS AND RESULTS: The occurrence of sublethal injury in PEF-treated E. coli cells depended on the pH of the treatment medium. Whereas a slight sublethal injury was detected at pH 7, 99.95% of survivors were injured when cells were treated at pH 4 for 400 micros at 19 kV. The PEF-injured cells were progressively inactivated by a subsequent holding at pH 4. CONCLUSIONS: PEF cause sublethal injury in E. coli. The measurement of sublethal injury using a selective medium plating technique allowed prediction of the number of cells that would be inactivated by subsequent storage in acidic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This work could be useful for improving food preservation by PEF technology and contributes to the knowledge of the mechanism of microbial inactivation by PEF.  相似文献   

3.
AIMS: This study aimed to apply differential scanning calorimetry (DSC) to evaluate the thermal inactivation kinetics of bacteria. METHODS AND RESULTS: The apparent enthalpy (DeltaH) of Escherichia coli cells was evaluated by a temperature scan in a DSC after thermal pretreatment in the calorimeter to various temperatures between 56 and 80 degrees C. Conventional semilogarithmic survival curve analysis was combined with a linearly increasing temperature protocol. Calorimetrically determined D and z values were compared to those obtained from plate count data collected under isothermal conditions to validate the new approach. CONCLUSIONS: The calculated D values using both apparent enthalpy and viability data for cells heat treated in the DSC were similar to the D values obtained from isothermal treatment. Temperatures for 1 through 10-log microbial population reductions, calculated from plate count and enthalpy data, were in agreement within 0.5-2.4 degrees C at a 4 degrees C min-1 heating rate. SIGNIFICANCE AND IMPACT OF THE STUDY: This novel calorimetric method provides an approach to obtain accurate and reproducible kinetic parameters for inactivation. The calorimetric method here described is time efficient and is conducted under conditions similar to food processing conditions.  相似文献   

4.
The physical effects of high-intensity pulsed electric fields (PEF) on the inactivation of diarrhoeagenic Bacillus cereus cells suspended in 0.1% peptone water were examined by transmission electron microscopy (TEM). The levels of PEF-induced microbial cell death were determined by enumeration on tryptone soy yeast extract agar and Bacillus cereus-selective agar plates. Following exposure to lethal levels of PEF, TEM investigation revealed irreversible cell membrane rupture at a number of locations, with the apparent leakage of intracellular contents. This study provides a clearer understanding of the mechanism of PEF-induced cellular damage, information that is essential for the further optimization of this emerging food-processing technology.  相似文献   

5.
AIMS: To apply fluorescent staining method for fast assessment of microbial quality of herbal medicines. METHODS AND RESULTS: The number of total bacteria and esterase-active bacteria on powdered traditional Chinese medicines were enumerated by fluorescent staining method using 6-carboxyfluorescein diacetate (6CFDA) and 4',6-diamidino-2-phenylindole (DAPI), and they were compared with colony-forming units (CFU). The CFU was approximately 10(3) per gram in ginseng radix, and no bacterial colonies were detected from others. However, the total bacterial number (TDC) was more than 10(7) per gram, and number of bacteria possessing esterase activity ranged from 1 to 3% of TDC. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Many bacteria in each Chinese medicine had enzyme activity and most of them could not be detected by conventional plate counting technique. Enumeration of bacterial cells on traditional Chinese medicines by fluorescent staining method requires less than 1 h. The double staining method with 6CFDA and DAPI could be applicable to rapid microbial monitoring of crude drugs.  相似文献   

6.
The common methods for inactivation of bacteria involve heating or exposure to toxic chemicals. These methods are not suitable for heat-sensitive materials, food, and pharmaceutical products. Recently, a complete inactivation of many microorganisms was achieved with high-pressure carbon dioxide at ambient temperature and in the absence of organic solvent and irradiation. The inactivation of spores with CO(2) required long residence time and high temperatures, such as 60 degrees C. In this study the synergistic effect of pulsed electric field (PEF) in combination with high-pressure CO(2) for inactivation was investigated. The bacteria Escherichia coli, Staphylococcus aureus, and Bacillus cereus were suspended in glycerol solution and treated in the first step with PEF (up to 25 KV/cm) and then with high-pressure CO(2) not higher than 40 degrees C and 200 bar. The inactivation efficiency was determined by counting the colony formation units of control and sample. Samples of the cells subjected to PEF treatment alone and in combination with CO(2) treatment were examined by scanning electron microscopy to determine the effect of the processes on the cell wall. Experimental results indicate that the viability decreased with increasing electrical field strength and number of pulses. A further batch treatment with supercritical CO(2) lead to complete inactivation of bacterial species and decreased the count of the spores by at least three orders of magnitude, the inactivation being enhanced by an increase of contact time between CO(2) and the sample. A synergistic effect between the pulsed electric field and the high-pressure CO(2) was evident in all the species treated. The new low temperature process is an alternative for pasteurization of thermally labile compounds such as protein and plasma and minimizes denaturation of important nutrient compounds in the liquid media.  相似文献   

7.
AIMS: To investigate the ability of six fluorescent-based, two-colour viability assays to detect different physiological growth stages of two oral streptococci species. METHODS AND RESULTS: The growth of Streptococcus sanguinis and Strep. mutans from 0 to 73 h culture periods was monitored by cell labelling with six mixtures of fluorescent stains, in addition to the growth parameters optical density (O.D.), log values of the total cell counts (log BC ml(-1)) and of the colony-forming units (log cfu ml(-1)). CONCLUSION: In comparison with the corresponding cfu values as control, the vitality proportions determined by the Syto 9/PI test best reflected the dynamic growth pattern of both test strains. The direct fluorescent-based, two-colour assay Syto 9/PI provides valuable information about microbial viability stages. SIGNIFICANCE AND IMPACT OF THE STUDY: The detection of viable but non-culturable bacteria requires more precise direct methods such as the fluorescent staining technique presented here, in addition to the classical plate count method.  相似文献   

8.
AIMS: Inactivation and sublethal injury of Lactobacillus plantarum at different pulsed electric field (PEF) strengths and total energy inputs were investigated to differentiate reversible and irreversible impacts on cell functionality. METHODS AND RESULTS: Lactobacillus plantarum was treated with PEF in model beer (MB) to determine critical values of field strength and energy input for cell inactivation. Below critical values, metabolic activity and membrane integrity were initially reduced without loss of viability. Above critical values, however, irreversible cell damage occurred. Presence of nisin or hop extract, during PEF treatment, resulted in an additional reduction of cell viability by 1;5 log cycles. Also, addition of the hop extract resulted in an additional two log cycles of sublethal injury. Partial reversibility of membrane damage was observed using propidium iodide (PI) uptake and staining. Inoculated MB containing hops was stored after PEF to evaluate the efficacy of such treatment for beer preservation. CONCLUSION: Cells were inactivated only above critical values of 13 kV x cm(-1) and 64 kJ x kg(-1); below these values cell damage was reversible. Storage experiments revealed that surviving cells were killed after 15 h storage in MB containing hops. SIGNIFICANCE AND IMPACT OF THE STUDY: Both reversible and irreversible cell damage due to PEF treatment was detected, depending on specific treatment conditions. The combination of PEF and hop addition is a promising nonthermal method of preservation for beer.  相似文献   

9.
AIMS: To clarify the effects of O(-) (atomic oxygen radical anion) water on the viability and morphological alteration of Escherichia coli. METHODS AND RESULTS: O(-) water (OW) was prepared by bubbling of O(-)/argon (Ar) flux into deionized water. O(-) and hydrogen peroxide (H(2)O(2)) in the resultant OW were analysed by electron paramagnetic resonance and ultraviolet (UV) absorption spectroscopy. The population of E. coli treated by a typical OW of pH 4.30 +/- 0.20 [(2.5 +/- 0.8) x 10(-3) mmol l(-1) O(-); 0.5 +/- 0.2 mmol l(-1) H(2)O(2)) was reduced by more than 3 log CFU ml(-1) within 60 min at 30 degrees C. Through scanning electron microscopy observation, the OW-treated cells appeared dramatically collapsed. The release of nucleic acid induced by OW was identified by UV absorption spectroscopy. CONCLUSIONS: O(-) water can result in inactivation of E. coli, nucleic acid release and cellular damage under the controlled laboratory conditions in excess of 15-30 min. Reactive oxygen species may play an important role in the inactivation process. SIGNIFICANCE AND IMPACT OF THE STUDY: This study first revealed that OW could inactivate E. coli, which may be potentially useful in developing a novel approach for the microbial decontamination of food, water or heat-sensitive material.  相似文献   

10.
AIMS: To develop a rapid and simple method for the assessment of metabolic activity of bacteria in natural environment. METHODS AND RESULTS: A rapid and simple multicolour digital image analysis system for enumerating viable bacteria based on active fluorescent staining has been developed. This system can accurately differentiate actively respiring bacteria and non-respiring bacteria by distinctive colour information in the digital image captured by an epifluorescence microscope equipped with low magnification objective lens. An algorithm to distinguish bacteria from considerable detritus, which produced bright fluorescence in different colours, by colour segmentation has also been developed. This system was applied to river water samples, and the total and respiratory active bacterial counts by digital image analysis were highly related to those by epifluorescence microscopy (r2 = 0.96 and 0.93, respectively). CONCLUSION: This system allowed the rapid and simple differentiation of bacteria from detritus and concurrent assessment of their metabolic activity, with results being available within 1 h. SIGNIFICANCE AND IMPACT OF THE STUDY: The low magnification image analysis allows more rapid and simple quantification of bacteria and could considerably decrease image data amount and acquisition time. This system could be easily applied to the rapid analysis of microbes in various environments.  相似文献   

11.
12.
AIMS: The objective was to investigate the occurrence of sublethal injury after pulsed electric field (PEF) depending on the treatment time, the electric field strength and the pH of the treatment media in two Gram-positive (Bacillus subtilis ssp. niger, Listeria monocytogenes) and six Gram-negative (Escherichia coli, Escherichia coli O157:H7, Pseudomonas aeruginosa, Salmonella serotype Senftenberg 775W, Salmonella serotype Typhimurium, Yersinia enterocolitica) bacterial strains. METHODS AND RESULTS: A characteristic behaviour was observed for the Gram-positive and Gram-negative bacteria studied. Whereas Gram-positive bacteria showed a higher PEF resistance at pH 7.0, the Gram-negative were more resistant at pH 4.0. In these conditions, in which bacteria showed their maximum resistance, a large proportion of sublethally injured cells were detected. In most cases, the longer the treatment time and the higher the electric field applied, the greater the proportion of sublethally injured cells that were detected. No sublethal injury was detected when Gram-positive bacteria were treated at pH 4.0 and Gram-negative at pH 7.0. CONCLUSIONS: Sublethal injury was detected after PEF so, bacterial inactivation by PEF is not an 'all or nothing' event. SIGNIFICANCE AND IMPACT OF THE STUDY: This work could be useful for improving food preservation by PEF.  相似文献   

13.
AIMS: In previous studies the microbial kinetics of Escherichia coli K12 have been evaluated under static and dynamic conditions (Valdramidis et al. 2005, 2006). An acquired microbial thermotolerance following heating rates lower than 0.82 degrees C min(-1) for the studied micro-organism was observed. Quantification of this induced physiological phenomenon and incorporation, as a model building block, in a general microbial inactivation model is the main outcome of this work. METHODS AND RESULTS: The microbial inactivation rate observed (k(obs)) under time-varying temperature conditions is studied and expressed as a function of the heating rate (dT/ dt). Hereto, a model building block related to the microbial physiology (k(phys)) under stress conditions is developed. Evaluation of the performance of the developed mathematical approach depicts that physiological adaptation is an essential issue to be considered when modelling microbial inactivation. CONCLUSIONS: Consideration, at a mathematical level, of microbial responses resulting in physiological adaptations contribute to the reliable quantification of the safety risks during food processing. SIGNIFICANCE AND IMPACT OF THE STUDY: By taking into account the physiological adaptation, the microbiological evolution during heat processing can be accurately assessed, and overly conservative or fail dangerous food processing designs can be avoided.  相似文献   

14.
AIMS: To examine cellular injuries occurring in cells of Escherichia coli (Gram-negative bacteria) and Lactobacillus rhamnosus (Gram-positive bacteria) in response to a high-intensity ultrasound treatment using classical plate count technique and flow cytometry. METHOD AND RESULTS: According to plate count results, E. coli (D-value 8.3 min) was far more sensitive than L. rhamnosus (D-value 18.1 min) in their response to the ultrasound intensity applied (20 kHz, 17.6 W). The dye precursor carboxyfluorescein diacetate (cFDA) could freely diffuse across the cytoplasmic membrane of intact cells of Gram-positive bacteria L. rhamnosus, resulting in its intracellular enzymatic conversion and emission of green fluorescence. In contrast, the presence of an outer membrane on E. coli, which represents the class of Gram-negative bacteria, apparently disabled the penetration of viability marker cFDA. Ultrasound application on E. coli yielded in an increasing population with disintegrated outer membrane, which allowed penetration of cFDA and its intracellular enzymatic conversion as well as accumulation. In both organisms evaluated only a small population was labelled by propidium iodide upon exposure to ultrasound for up to 20 min. Within the experimental conditions investigated ultrasound did not considerably affect the cytoplasmic membrane, although according to plate count results viability loss occurred. CONCLUSIONS: The results compiled suggest, that ultrasound induced cell death, which may not be related to membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: Limitation on the use of bacteriocins, which are aimed on destabilization of cytoplasmic membrane but inhibited by the outer membrane, could be overcome by ultrasound-assisted physical disruption of the outer membrane.  相似文献   

15.
Solid phase cytometry (SPC) has been investigated as a tool to assess the effect of antibiotics on the viability of Escherichia coli. After exposure of the cells to the antibiotic, they are retained on a polyester membrane filter and labelled using a fluorescein derivative as a substrate for intracellular esterases. The number of fluorescent bacteria is automatically counted in an Ar laser scanning device. In the presence of nutrients, all antibiotics tested in concentrations exceeding the MIC inhibited the multiplication of cells but not the labelling per se. However, when no nutrients were added, the cells did not multiply, and inhibition of the fluorescent staining was only observed for membrane permeabilizing antibiotics, even at sub-MIC concentrations. The selective detection by SPC of membrane-permeabilizing antibiotics corroborates the requirement of membrane integrity for viability labelling of bacteria. This selectivity has been exploited to develop a method for the detection of colistin residues in milk.  相似文献   

16.
Aims: The objective was to evaluate the relation of sublethal injury in the outer membrane of Enterobacter sakazakii to the inactivating effect of the combination of pulsed electric fields (PEF) treatments and citral. Methods and Results: The occurrence of sublethal injury in the outer membrane was measured using selective recovery media containing bile salts. Loss of membrane integrity was measured by the increased uptake of the fluorescent dye propidium iodide (PI). PEF caused nonpermanent and permanent envelope permeabilization of Ent. sakazakii at pH 4·0. After PEF, most surviving cells showed transient cell permeabilization and sublethal injury in their outer membranes. The simultaneous application of a mild PEF treatment (100 pulses, 25 kV cm?1) and 200 μl l?1 of citral to cells suspended in pH 4·0 buffer at a final concentration of 107 cells per ml showed an outstanding synergistic lethal effect, causing the inactivation of more than two extra log10 cycles. Conclusions: Our results confirm that the detection of sublethal injury in the outer membrane after PEF may contribute to the identification of the treatment conditions under which PEF may act synergistically with hydrophobic compounds such as citral. Significance and Impact of the Study: Knowledge about the mechanism of microbial inactivation by PEF will aid the establishment of successful combined preservation treatments.  相似文献   

17.
Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products.  相似文献   

18.
BACKGROUND: Discrimination among viable, active, and inactive cells in aquatic ecosystems is of great importance to understand which species participate in microbial processes. In this study, a new approach combining flow cytometry (FCM), cell sorting, and molecular analyses was developed to compare the diversity of viable cells determined by different methods with the diversity of total cells and active cells. METHODS: Total bacteria were determined by SYBR-II staining. Viable bacteria were determined in water samples from different sites by plate count techniques and by the direct viable count (DVC) method. Substrate-responsive cells (i.e., DVC(+) cells) were distinguished from nonresponsive cells (i.e., DVC(-) cells) by FCM and sorted. The genetic diversity of the sorted cell fraction was compared with the diversity of the total microbial community and with that of the culturable cell fraction by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rDNA fragments. The same approach was applied to a seawater sample enriched with nutrients. In this case, actively respiring cells (CTC+) were also enumerated by FCM, sorted, and analyzed by DGGE. RESULTS: The diversity of viable cells varied depending on the methods (traditional culture or DVC) used for viability assessment. Some phylotypes detected in the fraction of viable cells were not detectable at the community level (from total DNA). Similar results were found for actively respiring cells. Inversely, some phylotypes found at the community level were not found in viable and active cell-sorted fractions. It suggests that diversity determined at the community level includes nonactive and nonviable cells. CONCLUSION: This new approach allows investigation of the genetic diversity of viable and active cells in aquatic ecosystems. The diversity determined from sorted cells provides relevant ecological information and uncultured organisms can also be detected. New investigations in the field of microbial ecology such as the identification of species able to maintain cellular activity under environmental changes or in the presence of toxic compounds are now possible.  相似文献   

19.
AIMS: Monitoring of microbial changes during and after application of various disinfection treatments in a model domestic water system. METHODS AND RESULTS: A pilot-scale domestic water system consisting of seven galvanized steel re-circulation loops and copper dead legs was constructed. Culture techniques, confocal laser scanning microscopy after fluorescent in situ hybridization and viability staining with the BacLight LIVE/DEAD kit were used for planktonic and biofilm flora monitoring. Before starting the treatments, the system was highly contaminated with Legionella pneumophila and biofilm populations mainly consisted of beta-proteobacteria. In the water and the biofilm of the loops, continuous application of chlorine dioxide (0.5 mg l(-1)), or chlorine (2.5 mg l(-1)) were very effective in reducing the microbial flora, including L. pneumophila. Heterotrophic bacteria, although strongly reduced, were still detectable after ozone application (0.5 mg l(-1)), whereas with monochloramine (0.5 mg l(-1)) and copper-silver ionization (0.8/0.02 mg l(-1)), the contamination remained significantly higher. Monochloramine and copper-silver did not remove the biofilm. During copper-silver application, Legionella re-growth was observed. Only chlorine dioxide led to detectable effects in the dead leg. Amoebae could not be eliminated, and after interrupting the treatments, L. pneumophila quickly recovered their initial levels, in all cases. CONCLUSIONS: Chlorine dioxide, applied as a continuous treatment, was identified in this study as the most efficient for controlling L. pneumophila in a domestic water system. Chlorine dioxide showed a longer residual activity, leading to improved performance in the dead leg. Amoebae resisted to all the treatments applied and probably acted as reservoirs for L. pneumophila, allowing a quick re-colonization of the system once the treatments were interrupted. SIGNIFICANCE AND IMPACT OF THE STUDY: Control of microbial contamination requires maintenance of a constant disinfectant residual throughout the water system. Treatment strategies targeting free-living amoebae should lead to improved control of L. pneumophila. Such treatment strategies still have to be investigated.  相似文献   

20.
AIMS: The ability of probiotic micro-organisms to adhere to the intestinal surface is regarded as a substantial advantage in terms of bacteria persistence in the gastrointestinal tract. The aim of the present study was the development of a method based on fluorescent staining of bacteria and subsequent spectrofluorimetric detection to quantify the adhesion of several strains of Lactobacillus and Bifidobacterium to Caco-2 cells. METHODS AND RESULTS: Lactic acid bacteria strains were subjected to fluorescent staining using the viable probe carboxyfluorescein diacetate and subsequently incubated on Caco-2 monolayers. The adhesion of the micro-organisms was determined by spectrofluorimetry following the lysis of the attached bacterial cells and expressed as adhesion percentage. The values obtained for the micro-organisms tested ranged from 4% for Bifidobacterium infantis Bi1 to 10% for a Bifidobacterium mixture containing three different strains. CONCLUSIONS: In the present study we successfully applied fluorescent labelling and fluorimetric detection to investigate the adhesive properties of some Lactobacillus and Bifidobacterium strains and a Bifidobacterium mixture to Caco-2 cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The results proved that fluorescent labelling is suitable for adhesion studies and provides a reliable and safer alternative to radioactive labelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号