首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We explore the possible role of elastic mismatch between epidermis and mesophyll as a driving force for the development of leaf venation. The current prevalent ‘canalization’ hypothesis for the formation of veins claims that the transport of the hormone auxin out of the leaves triggers cell differentiation to form veins. Although there is evidence that auxin plays a fundamental role in vein formation, the simple canalization mechanism may not be enough to explain some features observed in the vascular system of leaves, in particular, the abundance of vein loops. We present a model based on the existence of mechanical instabilities that leads very naturally to hierarchical patterns with a large number of closed loops. When applied to the structure of high-order veins, the numerical results show the same qualitative features as actual venation patterns and, furthermore, have the same statistical properties. We argue that the agreement between actual and simulated patterns provides strong evidence for the role of mechanical effects on venation development.  相似文献   

2.
The venation patterns characteristics of different insect orders and of families belonging to the same order possess enormous variation in vein number, position and differentiation. Although the developmental basis of changes in vein patterns during evolution is entirely unknown, the identification of the genes and developmental processes involved in Drosophila vein pattern formation facilitates the elaboration of construction rules. It is thus possible to identify the likely changes which may constitute a source of pattern variation during evolution. In this review, we discuss how actual patterns of venation could be accounted for by modifications in different Pterygota of a common set of developmental operations. We argue that the individual specification of each vein and the modular structure of the regulatory regions of the key genes identified in Drosophila offer candidate entry points for pattern modifications affecting individual veins or interveins independently. Assuming a general conservation of the processes involved in different species, the transitions between different patterns may require few changes in the regulatory gene networks involved.  相似文献   

3.
In both plants and animals vein networks play an essential role in transporting nutrients. In plants veins may also provide mechanical support. The mechanism by which vein patterns are formed in a developing leaf remains largely unresolved. According to the canalization hypothesis, a signal inducing vein differentiation is transported in a polar manner and is channeled into narrow strands. Since inhibition of auxin transport affects venation patterns, auxin is likely to be part of the signal involved. However, it is not clear whether the canalization hypothesis, initially formulated over 25 years ago, is compatible with recent experimental data. In this paper we focus on three aspects of this question, and show that: (i) canalization models can account for an acropetal development of the midvein if vein formation is sink-driven; (ii) canalization models are in agreement with venation patterns resulting from inhibited auxin transport and (iii) loops and discontinuous venation patterns can be obtained assuming proper spacing of discrete auxin sources.  相似文献   

4.
5.
Arnott , Howard J. (Northwestern U., Evanston, Ill.) Anastomoses in the venation of Ginkgo biloba. Amer. Jour. Bot. 46(6): 405–411. Illus. 1959.—Although the vasculature of the lamina of Ginkgo biloba has been described as open dichotomous and devoid of anastomoses, vein unions were found in a survey of 1065 leaves collected from both long and short shoots of 11 trees. When studied by directing a strong light through the lamina and by clearings, 9.9% of the leaves possessed 1 or more anastomoses. Long shoot-leaves showed 13.4% anastomoses while short shoot-leaves showed 8.2% anastomoses. Multiple anastomoses were found in almost half of the leaves bearing anastomoses. In the 105 leaves having vein unions, 163 anastomoses were counted. These anastomoses could be grouped into 4 types which are easily distinguished by the number of dichotomies involved and by the presence or absence of dichotomies above the point of vein union. Other deviations were found from the “normal” venation pattern; these consisted of unconnected veins, veins anastomosed marginally but unconnected basally, and veins ending a considerable distance from the margin. It was speculated that the anastomoses found in Ginkgo biloba are of a simple, archaic type and are apparently analogous to the anastomoses in the leaves of certain ferns and in the leaflets of various cycads. The evolutionary significance of these anastomoses must be assessed by a broad study of venation patterns in the seed-plants.  相似文献   

6.
The leaf vasculature plays crucial roles in transport and mechanical support. Understanding how vein patterns develop and what underlies pattern variation between species has many implications from both physiological and evolutionary perspectives. We developed a method for extracting spatial vein pattern data from leaf images, such as vein densities and also the sizes and shapes of the vein reticulations. We used this method to quantify leaf venation patterns of the first rosette leaf of Arabidopsis thaliana throughout a series of developmental stages. In particular, we characterized the size and shape of vein network areoles (loops), which enlarge and are split by new veins as a leaf develops. Pattern parameters varied in time and space. In particular, we observed a distal to proximal gradient in loop shape (length/width ratio) which varied over time, and a margin-to-center gradient in loop sizes. Quantitative analyses of vein patterns at the tissue level provide a two-way link between theoretical models of patterning and molecular experimental work to further explore patterning mechanisms during development. Such analyses could also be used to investigate the effect of environmental factors on vein patterns, or to compare venation patterns from different species for evolutionary studies. The method also provides a framework for gathering and overlaying two-dimensional maps of point, line and surface morphological data.  相似文献   

7.
Evolution and Function of Leaf Venation Architecture: A Review   总被引:24,自引:4,他引:20  
The leaves of extant terrestrial plants show highly diverseand elaborate patterns of leaf venation. One fundamental featureof many leaf venation patterns, especially in the case of angiospermleaves, is the presence of anastomoses. Anastomosing veins distinguisha network topologically from a simple dendritic (tree-like)pattern which represents the primitive venation architecture.The high degree of interspecific variation of entire venationpatterns as well as phenotypic plasticity of some venation properties,such as venation density, indicate the high selective pressureacting on this branching system. Few investigations deal withfunctional properties of the leaf venation system. The interrelationshipsbetween topological or geometric properties of the various leafvenation patterns and functional aspects are far from beingwell understood. In this review we summarize current knowledgeof interrelationships between the form and function of leafvenation and the evolution of leaf venation patterns. Sincethe functional aspects of architectural features of differentleaf venation patterns are considered, the review also refersto the topic of individual and intraspecific variation. Onebasic function of leaf venation is represented by its contributionto the mechanical behaviour of a leaf. Venation geometry anddensity influences mechanical stability and may affect, forexample, susceptibility to herbivory. Transport of water andcarbohydrates is the other basic function of this system andthe transport properties are also influenced by the venationarchitecture. These various functional aspects can be interpretedin an ecophysiological context. Copyright 2001 Annals of BotanyCompany Review, leaves, leaf venation, evolution, network, transport, flow, mechanical stabilization  相似文献   

8.
Twelve species belonging to seven monocotyledonous families:Hydrocharitaceae, Taccaceae, Dioscoreaceae, Smilacaceae, Araceae,Alismataceae and Aponogetonaceae show reticulate venation typicalof dicotyledons. A study of the leaves of these species showsthat venation patterns are usually curvipalmate-convergate,occasionally rectipalmate or collimate, and rarely pinnate lyratetype. Number, size and shape of areoles, number of primaries,number of secondaries along one side of the primaries, anglebetween 1 and 2° veins and number of vein endings per areoleare given for each species. Intesecondary veins, isolated tracheids,loops, extension cells, raphide and raphide idioblasts and terminaltracheids were observed. Marginal ultimate venation is mostlyarcuate. Major and minor veins are jacketed by parenchymatousbundle sheath cells. The lamina of Tacca leontopetaloides, Colocasiaesculenta and Scindapsus aureus show a single midrib-like centralregion similar to that of dicotyledonous leaves, and it is multistrandedin Aponogeton natans, Limnophyton obtusifolium and Ottelia alismoides.The degree of vein order is most commonly up to fourth or fifthand rarely up to sixth in Dioscorea hispida. Monocotyledons, leaf architecture, vein endings, venation, areoles  相似文献   

9.
Leaf venation patterns of 150 species of Euphorbia are presented and their value as a diagnostic feature in the genus assessed. Based on the gross venation patterns, the species have been grouped into uni-, bi-, tri-veined and special categories. The majority of the species studied belonged to the tri-veined category, in which ornamentation of the veins and the course of traces in the lamina proved useful additional characters. Features such as the size of the areoles, the number of vein endings, and their further ramifications and composition in each areole varied in the same leaf or in different leaves of a given species. Furthermore, no direct correlation could be established between the areole size and the numbers of vein endings and tips per areole. Forty species possess a parenchymatous vein sheath. Globular chloroplasts showed up conspicuously in the sheath cells of a few species. Dilated tracheidal elements, localized on the venules or at the tips of vein endings, are characteristic of the xerophytic species. In some instances, correlation was apparent between plants grouped according to their venation patterns and their habit.  相似文献   

10.
中国木犀属植物叶脉形态及其分类学意义   总被引:1,自引:0,他引:1  
观察了中国木犀属植物4组19种叶脉形态。主要分析木犀属植物叶片脉序走向,脉序为环结曲行或半直行羽状脉。二级脉急转曲行或半直行,叶脉分支一般为4级,少数5级。盲脉1~2次分支,少数3次或不分支。仅柊树叶缘末级脉汇合成边脉.部分叶缘具齿,叶缘齿性状不稳定,因其内主脉不同而在本属种间表现出一个连续的变异过程。圆锥花序组与李榄属和木犀榄属从叶片脉序特征方面表现出较近的亲缘关系。四个组的叶脉形态在演化上关系上与花粉形态表现相一致。编写了叶片脉序特征分种检索表。  相似文献   

11.
Higher leaf vein density (D(vein) ) enables higher rates of photosynthesis because enhanced water transport allows higher leaf conductances to CO(2) and water. If the total cost of leaf venation rises in proportion to the density of minor veins, the most efficient investment in leaf xylem relative to photosynthetic gain should occur when the water transport capacity of the leaf (determined by D(vein) ) matches potential transpirational demand (determined by stomatal size and density). We tested whether environmental plasticity in stomatal density (D(stomata) ) and D(vein) were linked in the evergreen tree Nothofagus cunninghamii to achieve a balance between liquid and gas phase water conductances. Two sources of variation were examined; within-tree light acclimation, and differences in sun leaves among plants from ecologically diverse populations. Strong, linear correlations between D(vein) and D(stomata) were found at all levels of comparison. The correlations between liquid- and vapour-phase conductances implied by these patterns of leaf anatomy were confirmed by direct measurement of leaf conductance in sun and shade foliage of an individual tree. ? Our results provide strong evidence that the development of veins and stomata are coordinated so that photosynthetic yield is optimized relative to carbon investment in leaf venation.  相似文献   

12.
13.
滇中半湿润常绿阔叶林主要优势及常见种叶形态结构特征   总被引:1,自引:0,他引:1  
通过对滇中亚热带半湿润常绿阔叶林82个主要优势种和常见种进行叶结构分析研究,结果表明这些主要组成树种虽亲缘关系相互较远,但在相同的生态环境条件下叶结构却表现出了相似和相同的特点。主要为:群落中以单叶为主,边缘具齿较全缘为多,缺长渐尖叶,有毛叶和无毛叶所占的比例近于相等;叶脉主要为环结曲行羽状脉,大部分二级脉结环,被三、四级脉环所包围,夹角为锐角且变异多近一致;三级脉多为结网型;网眼发育完善较不完善为多,盲脉多分枝;大部分无包藏脉。并且讨论了其中一些特征如毛被,网眼,包藏脉和边缘脉等可能的生态学意义。该类森林群落主要树种的叶形态结构特征除了是物种自身系统进化的原因外,还是植物长期适应滇中高原偏干旱的季风气候的表现,是生态适应在叶形态结构上的反映  相似文献   

14.
独叶草叶二叉分枝脉序中网结脉和盲脉的形态学研究   总被引:13,自引:1,他引:12  
对独叶草营养叶二叉分枝脉序及其中的网结脉和盲脉的形态学研究表明:(1)网结脉中2条完全汇合的与靠近脉中完全分离的叶脉之间未发现任何形式的维管束汇合的中间类型及网结脉中具有不同程度的连接脉退化痕迹的事实表明,网结脉不可能由靠近脉产生,相反,由于网结脉中联结脉的退化而形成开放脉;(2)盲脉是通过伴随着齿退化的达齿脉的退化、网结脉中联结脉的间断、非网结脉由分枝处间断三种方式产生的;(3)越裂片脉的出现及其可以形成网结脉的现象表明独叶草营养叶可能曾具有较为复杂的脉序,这种叶脉也呈现出退化的趋势;(4)独叶草营养叶的二叉分枝脉序可能是一种退化性状,而网结脉的出现可能是这种退化过程中的残留痕迹。  相似文献   

15.
Hydraulic architecture of leaf venation in Laurus nobilis L.   总被引:3,自引:3,他引:0  
Veins are the main irrigation system of the leaf lamina and an understanding of the hydraulic architecture of the vein networks is essential for understanding leaf function. However, determination of leaf hydraulic parameters is challenging, because for most leaves the vein system is reticulate, contains a hierarchy of different vein sizes, and consists of leaky conduits. We present a new approach that allows for measurements of pressure differences between the petiole and any vein within the leaf. Measurements of Laurus nobilis leaves indicate that first‐ and second‐order veins have high axial conductance and relatively small radial permeability, thus allowing water to reach distal areas of the leaf with only a small loss of water potential. Higher order veins tend to be more hydraulically resistant and permit greater radial leakage. This design allows for a relatively equitable distribution of water potential and thus reflects the capacity of the venation to provide a relatively homogeneous water supply across the leaf lamina, with only the leaf margins being hydraulically disadvantaged relative to the rest of the leaf.  相似文献   

16.
叶脉网络功能性状及其生态学意义   总被引:6,自引:0,他引:6       下载免费PDF全文
叶脉网络结构是叶脉系统在叶片里的分布和排列样式。早期叶脉网络结构研究主要集中在其分类学意义上; 近年来叶脉网络功能性状及其在植物水分利用上的意义已成为植物生态学研究的热点。该文介绍了叶脉网络功能性状的指标体系(包括叶脉密度、叶脉直径、叶脉之间的距离、叶脉闭合度等), 综述了叶脉网络功能性状与叶脉系统功能(包括水分、养分和光合产物等物质运输、机械支撑和虫害防御等)的关系, 叶脉网络功能性状与叶片其他功能性状(包括比叶重、叶寿命、光合速率、叶片大小、气孔密度等)的协同变异和权衡关系, 以及叶脉网络功能性状随环境因子(包括水分、温度、光照等)的变化规律等方面的最新研究进展。此外, 叶脉网络功能性状的研究成果也被应用于古环境重建、城市交通规划、流域规划及全球变化研究中。由于叶脉网络功能性状是环境因子与系统发育共同作用的结果, 未来开展分子—叶片—植物—生态系统等多尺度的叶脉网络功能性状研究, 理清叶脉网络功能性状与气孔失水—茎干导水—根系吸水等植物水分利用的关系, 将为预测植物及生态系统对全球变化的响应提供新的启示。  相似文献   

17.
王永  何顺志 《广西植物》2015,35(4):476-486
采用制作叶脉标本和透明叶标本的方法,对贵州产28种2变种小檗属植物叶脉特征进行比较研究。结果表明:贵州小檗属植物的脉序类型有5种:半达缘羽状脉、花环状半达缘羽状脉、简单弓形羽状脉、花环状弓形羽状脉和混合型。叶脉分支一般有五级:1一级脉构架均为羽状脉,粗度有很粗、粗、中等粗细和纤细四种类型,分支方式包括单轴分支和合轴分支;2粗二级脉构架中有分支达缘或分支均不达缘,与中脉夹角变化各异,内二级脉存在或缺失,细二级脉半达缘、真曲行或简单弓形,间二级脉类型复杂多变但频度种间有差异;3三级脉贯串型、结网型或分支型;4四、五级脉网状或自由分支且常混合在一起。脉间区从发育差到良好,小脉从不分支到不均等分支等各种类型均有,叶缘末级脉缺失、不完整、钉状和环状。大部分种类叶缘具齿,每1cm齿数目和齿内腺点的特性等特征在不同种类间有区别,具有鉴定价值,但齿其它特征复杂多变或种间区别较小,同时齿内脉性状也不稳定。此外,齿的有无会对脉序类型产生影响。小檗属植物叶脉类型存在种间差异,具有重要的分类学价值,叶脉类型的变化和复杂程度显示了该属植物的进化特点;叶齿的有无和齿特征具有分类学和系统学意义。基于叶脉特征的研究结果并结合重要的外部形态学特征编制了贵州小檗属植物的分种检索表。研究结果可为小檗属植物分类寻找新的依据并探讨其系统学意义。  相似文献   

18.
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.  相似文献   

19.
Leaves constitute a substantial fraction of the total resistance to water flow through plants. A key question is how hydraulic resistance within the leaf is distributed among petiole, major veins, minor veins, and the pathways downstream of the veins. We partitioned the leaf hydraulic resistance (R(leaf)) for sugar maple (Acer saccharum) and red oak (Quercus rubra) by measuring the resistance to water flow through leaves before and after cutting specific vein orders. Simulations using an electronic circuit analog with resistors arranged in a hierarchical reticulate network justified the partitioning of total R(leaf) into component additive resistances. On average 64% and 74% of the R(leaf) was situated within the leaf xylem for sugar maple and red oak, respectively. Substantial resistance-32% and 49%- was in the minor venation, 18% and 21% in the major venation, and 14% and 4% in the petiole. The large number of parallel paths (i.e. a large transfer surface) for water leaving the minor veins through the bundle sheath and out of the leaf resulted in the pathways outside the venation comprising only 36% and 26% of R(leaf). Changing leaf temperature during measurement of R(leaf) for intact leaves resulted in a temperature response beyond that expected from changes in viscosity. The extra response was not found for leaves with veins cut, indicating that water crosses cell membranes after it leaves the xylem. The large proportion of resistance in the venation can explain why stomata respond to leaf xylem damage and cavitation. The hydraulic importance of the leaf vein system suggests that the diversity of vein system architectures observed in angiosperms may reflect variation in whole-leaf hydraulic capacity.  相似文献   

20.
Leaf venation patterns vary considerably between species and between leaves within a species. A mechanism based on canalization of auxin transport has been suggested as the means by which plastic yet organized venation patterns are generated. This study assessed the plasticity of Arabidopsis thaliana leaf venation in response to ectopic ground or procambial cell divisions and auxin transport inhibition (ATI). Ectopic ground cell divisions resulted in vascular fragments between major veins, whereas ectopic procambial cell divisions resulted in additional, abnormal vessels along major veins, with more severely perturbed lines forming incomplete secondary and higher-order venation. These responses imply limited vascular plasticity in response to unscheduled cell divisions. Surprisingly, a combination of ectopic ground cell divisions and ATI resulted in massive vascular overgrowth. It is hypothesized that the vascular overproduction in auxin transport-inhibited wild-type leaves is limited by simultaneous differentiation of ground cells into mesophyll cells. Ectopic ground cell divisions may negate this effect by providing undifferentiated ground cells that respond to accumulated auxin by differentiation into vascular cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号