首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient limitation determines the primary production and species composition of many ecosystems. Here we apply an adaptive dynamics approach to investigate evolution of the ecological stoichiometry of primary producers and its implications for plant-herbivore interactions. The model predicts a trade-off between the competitive ability and grazing susceptibility of primary producers, driven by changes in their nutrient uptake rates. High nutrient uptake rates enhance the competitiveness of primary producers but also increase their nutritional quality for herbivores. This trade-off enables coexistence of nutrient exploiters and grazing avoiders. If herbivores are not selective, evolution favors runaway selection toward high nutrient uptake rates of the primary producers. However, if herbivores select nutritious food, the model predicts an evolutionarily stable strategy with lower nutrient uptake rates. When the model is parameterized for phytoplankton and zooplankton, the evolutionary dynamics result in plant-herbivore oscillations at ecological timescales, especially in environments with high nutrient availability and low selectivity of the herbivores. High herbivore selectivity stabilizes the community dynamics. These model predictions show that evolution permits nonequilibrium dynamics in plant-herbivore communities and shed new light on the evolutionary forces that shape the ecological stoichiometry of primary producers.  相似文献   

2.
Recent studies have shown that adaptive evolution can be rapid enough to affect contemporary ecological dynamics in nature (i.e. ‘rapid evolution’). These studies tend to focus on trait functions relating to interspecific interactions; however, the importance of rapid evolution of stoichiometric traits has been relatively overlooked. Various traits can affect the balance of elements (carbon, nitrogen, and phosphorus) of organisms, and rapid evolution of such stoichiometric traits will not only alter population and community dynamics but also influence ecosystem functions such as nutrient cycling. Multiple environmental changes may exert a selection pressure leading to adaptation of stoichiometrically important traits, such as an organism's growth rate. In this paper, we use theoretical approaches to explore the connections between rapid evolution and ecological stoichiometry at both the population and ecosystem level. First, we incorporate rapid evolution into an ecological stoichiometry model to investigate the effects of rapid evolution of a consumer's stoichiometric phosphorus:carbon ratio on consumer–producer population dynamics. We took two complementary approaches, an asexual clonal genotype model and a quantitative genetic model. Next, we extended these models to explicitly track nutrients in order to evaluate the effect of rapid evolution at the ecosystem level. Our model results indicate rapid evolution of the consumer stoichiometric trait can cause complex dynamics where rapid evolution destabilizes population dynamics and rescues the consumer population from extinction (evolutionary rescue). The model results also show that rapid evolution may influence the level of nutrients available in the environment and the flux of nutrients across trophic levels. Our study represents an important step for theoretical integration of rapid evolution and ecological stoichiometry.  相似文献   

3.
Nutrient stoichiometric ratios are primary driving factors of planktonic food web dynamics. Ecological stoichiometry theory postulates the elemental ratios of consumer species to be homeostatic, while primary-producer stoichiometry may vary with ambient nutrient availability. The notion of phytoplankton intracellular storage is far from novel, but remains largely unexplored in modeling studies of population dynamics. We constructed a seasonally-unforced, zero-dimensional, nutrient–phytoplankton–zooplankton–detritus (NPZD) model that considers dynamic phytoplankton phosphorus reserves and quasi-dynamic zooplankton stoichiometry. A generic food quality term is used to express seston biochemical composition, ingestibility, and digestibility. We examined the sensitivity of the planktonic food web patterns to light and nutrient availability, zooplankton mortality, and detritus food quality as well as to phytoplankton intracellular storage and zooplankton stoichiometry. Our results reinforce earlier findings that high quality seston exerts a stabilizing effect on food web dynamics. However, we also found that the combination of low algal and high detritus food quality with high zooplankton mortality yielded limit cycles and multiple steady states, suggesting that the heterogeneity characterizing seston nutritional quality may have more complicated ecological ramifications. Our numerical experiments identify resource competition strategies related to nutrient transport rates and internal nutrient quotas that may be beneficial for phytoplankton to persevere in resource-limiting habitats. We also highlight the importance of the interplay between optimal stoichiometry and the factors controlling homeostatic rigidity in zooplankton. In particular, our predictions show that the predominance of phosphorus-rich and tightly-homeostatic herbivores in nutrient-enriched environments with low seston food quality can potentially result in high phytoplankton abundance, high phytoplankton-to-zooplankton ratios, and acceleration of oscillatory dynamics. Generally, our modeling study emphasizes the impact of both intracellular/somatic storage and food quality on prey–predator interactions, pinpointing an important aspect of food web dynamics usually neglected by the contemporary modeling studies.  相似文献   

4.
In this paper, a mathematical model for the interacting dynamics of phytoplankton-zooplankton is proposed. The phytoplankton have the ability to take refuge and release toxins to avoid over predation by zooplankton. The zooplankton are provided some additional food to persist in the system. The phytoplankton are assumed to be affected directly by external toxic substances whereas zooplankton are affected indirectly by feeding on the affected phytoplankton. We incorporate seasonal variations in the model, assuming the level of nutrients, refuge and the rate of toxins released by phytoplankton as functions of time. Our results show that when high toxicity and refuge cause extinction of zooplankton, providing additional food supports the survival of zooplankton population and controls the phytoplankton population. Prey refuge and additional food have stabilizing effects on the system; higher values of the former results in extinction of zooplankton whereas phytoplankton disappear for larger values of the latter. Seasonality in nutrients level and toxins released by phytoplankton generate higher periodic solutions while time-dependent refuge of phytoplankton causes the occurrence of a period-three solution. The possibility of finding additional food for zooplankton may push back the ecosystem to a simple stable state from a complex dynamics.  相似文献   

5.
6.
7.
Plant strategies for nutrient acquisition and recycling are key components of ecosystem functioning. How the evolution of such strategies modifies ecosystem functioning and services is still not well understood. In the present work, we aim at understanding how the evolution of different phenotypic traits link aboveground and belowground processes, thereby affecting the functioning of the ecosystem at different scales and in different realms. Using a simple model, we follow the dynamics of a limiting nutrient inside an ecosystem. Considering trade-offs between aboveground and belowground functional traits, we study the effects of the evolution of such strategies on ecosystem properties (amount of mineral nutrient, total plant biomass, dead organic matter, and primary productivity) and whether such properties are maximized. Our results show that when evolution leads to a stable outcome, it minimizes the quantity of nutrient available (following Tilman’s R* rule). We also show that considering the evolution of aboveground and belowground functional traits simultaneously, total plant biomass and primary productivity are not necessarily maximized through evolution. The coupling of aboveground and belowground processes through evolution may largely diminish predicted standing biomass and productivity (extinction may even occur) and impact the evolutionary resilience (i.e., the return time to previous phenotypic states) of the ecosystem in the face of external disturbances. We show that changes in plant biomass and their effects on evolutionary change can be understood by accounting for the links between nutrient uptake and mineralization, and for indirect effects of nutrient uptake on the amount of detritus in the system.  相似文献   

8.
The mineral and biochemical food quality of prey may limit predator production. This well‐studied direct bottom–up effect is especially prominent for herbivore–plant interactions. Low‐quality prey species, particularly when defended, are generally considered to be less prone to predator‐driven extinction. Undefended high‐quality prey species sustain high predator production thereby potentially increasing their own extinction risk. The food quality of primary producers is highly species‐specific. In communities of competing prey species, predators thus may supplement their diets of low‐quality prey with high‐quality prey, leading to indirect horizontal interactions between prey species of different food quality. We explore how these predator‐mediated indirect interactions affect species coexistence in a general predator–prey model that is parametrized for an experimental algae– rotifer system. To cover a broad range of three essential functional traits that shape many plant–herbivore interactions we consider differences in 1) the food quality of the prey species, 2) their competitive ability for nutrient uptake and 3) their defence against predation. As expected, low food quality of prey can, similarly to defence, provide protection against extinction by predation. Counterintuitively, our simulations demonstrate that being of high food quality also prevents extinction of that prey species and additionally promotes coexistence with a competing, low‐quality prey. The persistence of the high‐quality prey enables a high conversion efficiency and control of the low‐quality prey by the predator and allows for re‐allocation of nutrients to the high‐quality competitor. Our results show that high food quality is not necessarily detrimental for a prey species but instead can protect against extinction and promote species richness and functional biodiversity.  相似文献   

9.
Adaptive evolution of phytoplankton cell size   总被引:1,自引:0,他引:1  
We present a simple nutrient-phytoplankton-zooplankton (NPZ) model that incorporates adaptive evolution and allometric relations to examine the patterns and consequences of adaptive changes in plankton body size. Assuming stable environmental conditions, the model makes the following predictions. First, phytoplankton should evolve toward small sizes typical of picoplankton. Second, in the absence of grazers, nutrient concentration is minimized as phytoplankton reach their fitness maximum. Third, increasing nutrient flux tends to increase phytoplankton cell size in the presence of phytoplankton-zooplankton coevolution but has no effect in the absence of zooplankton. Fourth, phytoplankton reach their fitness maximum in the absence of grazers, and the evolutionary nutrient-phytoplankton system has a stable equilibrium. In contrast, phytoplankton may approach their fitness minimum in the evolutionary NPZ system where phytoplankton and zooplankton are allowed to coevolve, which may result in oscillatory (unstable) dynamics of the evolutionary NPZ system, compared with the otherwise stable nonevolutionary NPZ system. These results suggest that evolutionary interactions between phytoplankton and zooplankton may have contributed to observed changes in phytoplankton sizes and associated biogeochemical cycles over geological time scales.  相似文献   

10.
Productivity is predicted to drive the ecological and evolutionary dynamics of predator-prey interaction through changes in resource allocation between different traits. Here we report results of an evolutionary experiment where prey bacteria Serratia marcescens was exposed to predatory protozoa Tetrahymena thermophila in low- and high-resource environments for approximately 2400 prey generations. Predation generally increased prey allocation to defence and caused prey selection lines to become more diverse. On average, prey became most defensive in the high-resource environment and suffered from reduced resource use ability more in the low-resource environment. As a result, the evolution of stronger prey defence in the high-resource environment led to a strong decrease in predator-to-prey ratio. Predation increased temporal variability of populations and traits of prey. However, this destabilizing effect was less pronounced in the high-resource environment. Our results demonstrate that prey resource availability can shape the trade-off allocation of prey traits, which in turn affects multiple properties of the evolving predator-prey system.  相似文献   

11.
The paradox of enrichment in an adaptive world   总被引:1,自引:0,他引:1  
Paradoxically, enrichment can destabilize a predator-prey food web. While adaptive dynamics can greatly influence the stability of interaction systems, few theoretical studies have examined the effect of the adaptive dynamics of interaction-related traits on the possibility of resolution of the paradox of enrichment. We consider the evolution of attack and defence traits of a predator and two prey species in a one predator-two prey system in which the predator practises optimal diet use. The results showed that optimal foraging alone cannot eliminate a pattern of destabilization with enrichment, but trait evolution of the predator or prey can change the pattern to one of stabilization, implying a possible resolution of the paradox of enrichment. Furthermore, trait evolution in all species can broaden the parameter range of stabilization. Importantly, rapid evolution can stabilize this system, but weaken its stability in the face of enrichment.  相似文献   

12.
13.
Although generalist predators catch a great diversity of prey species, foraging theory has mostly been concerned with quantitative aspects and neglected questions about the nutrient quality of prey. Here, we test the hypothesis that the life history of a trap-building predator is affected by both prey availability and by the nutrient quality of prey. Under controlled laboratory conditions, orb-weaving spiders ( Zygiella x-notata ) were raised from hatchlings to maturity on prey of different nutrient quality and in different amounts. Both prey nutrient quality and availability had significant but different effects on many important life history traits, such as instar duration, number of instars used in the development, body weight at maturation and development time. Prey availability was especially important for growth rates whereas prey nutrient quality had the most severe effects on juvenile survivorship and female fecundity. Furthermore, while prey of low quality tended to reduce the number of instars used in the development, prey availability induced sex-specific responses in instar numbers. Thus, both prey nutrient quality and availability may be important factors shaping the evolution of life history traits in generalist predators.  相似文献   

14.
A simple food chain which consists of nutrient, prey and predator in which nutrient is growth limiting at low concentrations but growth inhibiting at high concentrations is investigated in this study. It is assumed that the nutrient concentration is separated into internal and external nutrient concentration and only the internal nutrient level is capable of catalyzing cell growth. It is shown that the dynamics of the system depend on thresholds R(0) and R(1). With inhibition, there exist initial conditions for which the predator becomes extinct but not the prey when R(0)<1. If R(0),R(1)1, the system is uniformly persistent even in the inhibited environment.  相似文献   

15.
Summary We analyse dynamic models of the coevolution of continuous traits that determine the capture rate of a prey species by a predator. The goal of the analysis is to determine conditions when the coevolutionary dynamics will be unstable and will generate population cycles. We use a simplified model of the evolutionary dynamics of quantitative traits in which the rate of change of the mean trait value is proportional to the rate of increase of individual fitness with trait value. Traits that increase ability in the predatory interaction are assumed to have negative effects on another component of fitness. We concentrate on the role of equilibrial fitness minima in producing cycles. In this case, the mean trait of a rapidly evolving species minimizes its fitness and it is chased around this equilibrium by adaptive evolution in the other species. Such cases appear to be most likely if the capture rate of prey by predators is maximal when predator and prey phenotypes match each other. They are possible, but less likely when traits in each species determine a one-dimensional axis of ability related to the interaction. Population dynamics often increase the range of parameter values for which cycles occur, relative to purely evolutionary models, although strong prey self-regulation may stabilize an evolutionarily unstable subsystem.  相似文献   

16.
We analyse dynamic models of the coevolution of continuous traits that determine the capture rate of a prey species by a predator. The goal of the analysis is to determine conditions when the coevolutionary dynamics will be unstable and will generate population cycles. We use a simplified model of the evolutionary dynamics of quantitative traits in which the rate of change of the mean trait value is proportional to the rate of increase of individual fitness with trait value. Traits that increase ability in the predatory interaction are assumed to have negative effects on another component of fitness. We concentrate on the role of equilibrial fitness minima in producing cycles. In this case, the mean trait of a rapidly evolving species minimizes its fitness and it is chased around this equilibrium by adaptive evolution in the other species. Such cases appear to be most likely if the capture rate of prey by predators is maximal when predator and prey phenotypes match each other. They are possible, but less likely when traits in each species determine a one-dimensional axis of ability related to the interaction. Population dynamics often increase the range of parameter values for which cycles occur, relative to purely evolutionary models, although strong prey self-regulation may stabilize an evolutionarily unstable subsystem.  相似文献   

17.
《农业工程》2014,34(4):191-195
Organisms rely on a series of chemical reactions, which are constrained by the availability of key chemical elements, such as carbon (C), nitrogen (N), and phosphorus (P). Ecological stoichiometry provides a tool for analyzing how the balance of elements required by organisms affects food-web dynamics. Ecological stoichiometric theory suggests that the balance between supply and demand of elements is determined by the conversion efficiency from resources to organisms.Autotrophs and heterotrophs commonly face unequal access to and uptake of elements. The stoichiometric variability of autotrophs is based on their ability to maintain the balance of elements required for growth. This creates a challenge for their grazers. Phytoplankton can adjust their P content to ambient nutrient concentrations, while zooplankton cannot store excess nutrients. Ecological stoichiometric theory thus suggests that zooplankton have relatively fixed stoichiometry compared with phytoplankton.Nutrient limitation is common in aquatic systems. Stoichiometric imbalances between phytoplankton and zooplankton mean that zooplankton rarely find optimal food sources, and phytoplankton production is in excess. P availability potentially limits zooplankton growth, because of the high C:P ratio in phytoplankton relative to zooplankton demand. Based on the Liebig minimum principle, organisms are normally limited by a single nutrient, while everything else is in excess. Under P deficiency, excess C cannot be allocated to zooplankton somatic growth, and the net intake of C must balance the C:P ratio of zooplankton. Thus, when zooplankton encounter nutritionally imbalanced foods the elements in excess are released in order to maintain homeostasis. Excess C, released by zooplankton results in two biochemical challenges: (1) to sequester the limiting element and (2) to either store or dispose of the element in surplus.Zooplankton must resort to various physiological solutions to cope with these challenges. As a first option, zooplankton can reduce their C assimilation efficiency but maintain their P assimilation efficiency. Alternatively, after assimilation, excess C may be stored in C-rich compounds. Finally, assimilated excess C could also be disposed of through respiration or extracellular release. Excess C released by zooplankton reduces C transfer efficiency and sequestration in aquatic ecosystems.In aquatic ecosystems, C sequestration largely depends on the balance between uptake and demand for key nutrient elements. These feedback mechanisms have arisen only because organisms must obey stoichiometric rules at the cell and body levels, which greatly constrain the range of element values in ecosystems. Thus, the fate of C in ecosystems is determined by the absolute and relative demands for N and P of each organism. Limiting elements are utilized for growth and transferred in food chains with high efficiency, while non-limiting elements must be disposed of. Therefore, low C:P phytoplankton communities subject to high turnover rates and high productivity are selectively channeled into zooplankton. When zooplankton face high C:P foods, excess C is returned to the environment. Hence, nutrient-deficient phytoplankton constitute poor food, influencing the entire food web and adversely affecting secondary production at all levels.Excess C processed by zooplankton has far-reaching implications for ecosystem food-web functioning and C sequestration. Studies of the fate of excess C in zooplankton would increase the understanding of energy flow and material cycling in aquatic ecosystems. This paper reviews the reasons for P limitation and excess C in zooplankton, principal routes for the disposal of excess C, and the ecological effects of this. In addition, the paper aims to provide insight and a theoretical foundation for related studies in China.  相似文献   

18.
Li  Chunhuan  Yu  Hailong  Xu  Yixin  Zhu  Wanwan  Wang  Pan  Huang  Juying 《Plant Ecology》2022,223(4):407-421

Leaf functional traits are important for characterizing plant nutrient strategies. The C:N:P stoichiometric balance in soils and plants, which could indicate types of nutrient limitation, is altered under changing precipitation patterns. However, whether such alterations affect leaf functional traits remains unclear. We conducted a three-year simulated precipitation experiment in a desert steppe in northwestern China to determine changes in leaf photosynthetic traits and nutrient conservation traits in five plant species and tested the relationships of these traits with soil and leaf C:N:P stoichiometry. The five species showed few changes in their leaf traits under drought conditions, but they adjusted these traits (especially P traits) under extremely wet conditions (50% increase in precipitation). Improved leaf photosynthetic N and P use, lowered leaf P uptake, and enhanced leaf N resorption might help Lespedeza potaninii to rely less on soil nutrients in extremely wet environments than other species do. Leaf photosynthetic traits were regulated primarily by soil and leaf C:N:P stoichiometry. Leaf nutrient conservation traits were controlled by both leaf C:N:P stoichiometry and soil properties (i.e., enzyme activity and microbial biomass), a condition especially true for P traits. The results suggest that precipitation-induced alteration in the C:N:P stoichiometric balance might have important influences on plant nutrient use strategies and even on the nutrient cycling of desert steppes.

  相似文献   

19.
1. Fish can play an important role in coupling benthic and pelagic habitats by consuming benthic prey and providing essential nutrients to algae in dissolved form. However, little is known about the factors affecting the magnitude of this nutrient subsidy. 2. Using laboratory and mesocosm experiments we evaluated how varying ingestion rates of bluegill sunfish (Lepomis macrochirus) affects fish excretion rates of both nitrogen (N) and phosphorus (P). During the 10‐week mesocosm experiment, we also evaluated how varying ingestion rates may affect plankton community dynamics, and nutrient flux between pelagic and benthic habitats. Lastly, bioenergetic/mass balance models were used to examine the nutrient stoichiometry of fish body composition and excretion products. 3. Under laboratory conditions, both N and P excretion rates increased with increased ingestion of benthic prey surrogates (earthworms). This effect was more pronounced for N than P. Furthermore, under the more realistic conditions of the mesocosm experiment ingestion rate had no significant effect on P excretion rate. 4. Increased fish ingestion rate in the mesocosm experiment increased total algal biomass and the flux of nutrients from the water column to sediments. Effects of variable ingestion were much stronger on periphyton biomass and algal sedimentation rates than on phytoplankton or zooplankton biomass or composition. 5. Fish body nutrient composition was greatly affected by ingestion rate. N content increased and P content decreased with ingestion rate. As a result, the N : P ratio of fish bodies also increased with ingestion rate. The N : P ratio of nutrients excreted by fish also increased with ingestion rate, counter to predictions of stoichiometric theory, which predicts that excreted N : P ratio is negatively correlated to body N : P. However, this finding can be explained by relaxing the assumption of constant nutrient assimilation rates, and our mass balance data suggest that assimilation rates vary indeed with ingestion rate. 6. Our study provides experimental evidence that translocation of benthic‐derived nutrients by fish can affect the flux of nutrients among habitats, while also suggesting that stoichiometry models need to better incorporate how variable ingestion rates affect nutrient assimilation and excretion rates.  相似文献   

20.
Quantitative approaches to predator–prey interactions are central to understanding the structure of food webs and their dynamics. Different predatory strategies may influence the occurrence and strength of trophic interactions likely affecting the rates and magnitudes of energy and nutrient transfer between trophic levels and stoichiometry of predator–prey interactions. Here, we used spider–prey interactions as a model system to investigate whether different spider web architectures—orb, tangle, and sheet‐tangle—affect the composition and diet breadth of spiders and whether these, in turn, influence stoichiometric relationships between spiders and their prey. Our results showed that web architecture partially affects the richness and composition of the prey captured by spiders. Tangle‐web spiders were specialists, capturing a restricted subset of the prey community (primarily Diptera), whereas orb and sheet‐tangle web spiders were generalists, capturing a broader range of prey types. We also observed elemental imbalances between spiders and their prey. In general, spiders had higher requirements for both nitrogen (N) and phosphorus (P) than those provided by their prey even after accounting for prey biomass. Larger P imbalances for tangle‐web spiders than for orb and sheet‐tangle web spiders suggest that trophic specialization may impose strong elemental constraints for these predators unless they display behavioral or physiological mechanisms to cope with nutrient limitation. Our findings suggest that integrating quantitative analysis of species interactions with elemental stoichiometry can help to better understand the occurrence of stoichiometric imbalances in predator–prey interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号