首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microbial biofilms have become increasingly problematic in the food processing and medical industries where they cause food and surface contamination. Biofilms have also been implicated as the cause of serious infections in humans as their occurrence makes it difficult to treat common infections and the likelihood of recurrent infections is high. Due to emerging resistance, conventional control methods are fast becoming ineffective. In this study, the use of a selection of commercial plant extracts is investigated. The inhibitory effects of eight herbal extracts on the development of microbial biofilms was investigated against clinical and reference strains of Pseudomonas aeruginosa and Candida albicans. The antimicrobial activity was investigated on the planktonic forms using the minimum inhibitory concentration assay. The extracts that showed the highest antimicrobial activity against the two test organisms were Echinacea angustifolia (cone flower), Mentha piperita (peppermint) and Rosmarinus officinalis (rosemary) with minimum inhibitory concentration values between 0.38 and 2.5 mg/ml. The crystal violet assay was used to assess the effect of pre-treating a surface with plant extracts on cell attachment and the extent of biofilm development following exposure to extracts (biofilm biomass). Most of the extracts reduced microbial colonization by at least 50%. In contrast, preformed biofilms were less responsive to the majority of extracts, thus growth inhibition was more difficult to achieve. Mentha piperita was the only extract that showed some antibiofilm activity against both pathogens.  相似文献   

2.
Soluble microbial products (SMP) present a significant component of effluent organic matter from biological wastewater treatment reactors, and can affect the membrane fouling and formation of disinfection by-products. Thus, SMP have attracted increasing concerns in wastewater treatment and reclamation. In this work, the formation of SMP by activated sludge at various NaCl concentrations is investigated by using fluorescence excitation–emission matrix (EEM) spectroscopy with parallel factor analysis (PARAFAC) and fluorescence regional integration (FRI). The results show that a high level of salinity decreases substrate removal efficiency and leads to an accumulation of SMP, especially proteins. Three components of SMP, one protein-like and two humic-acid-like components, are identified by PARAFAC, which exhibit different trends with the variation of NaCl concentration. FRI analysis reveals that the majority of protein fluorescence is attributed to tryptophan and tryptophan-like proteins, rather than tyrosine and tyrosine-like proteins. With an increase in NaCl concentration, the normalized volume percentages of tyrosine and tryptophan region increase, while those of humic- and fulvic-acid-like region decrease significantly. This work demonstrates that salinity affects the formation of SMP, and that EEM with PARAFAC in combination with FRI analysis is a useful tool to get insight into the formation of SMP by activated sludge.  相似文献   

3.
Soluble microbial products (SMP) in anaerobic chemostats   总被引:7,自引:0,他引:7  
The production of soluble microbial products (SMP) in anaerobic systems was evaluated using chemostat reactors. Results from steady-state and tracer experiments with (14)C-glucose and (14)C-acetate showed that significant amounts of SMP were produced during the acidogenesis of glucose, but that SMP did not accumulate during methanogenesis from acetate. In addition, at a retention time of 40 days, SMP comprised almost all of the effluent COD from the glucose-fed chemostat. For shorter retention times, as low as 10 days, the SMP concentration remained almost constant, but its significance in the effluent COD was reduced due to the accumulation of intermediate volatile fatty acids. The results from a (14)C-tracer experiment in the glucose-fed chemostat were used to evaluate the importance of including SMP formation and degradation in kinetic modeling of the methanogenic chemostats. Three models were evaluated: a model without SMP production, a model with SMP production but no degradation, and a model with SMP production and degradation, The results of this kinetic analysis indicate that the model that includes SMP production and degradation was the only one able to adequately represent the fate of (14)C in the tracer experiment. The kinetic parameters were successfully used to predict steady-state concentrations of SMP and to characterize the formation and degradation characteristics of the SMP. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Laspidou and Rittmann (Water Research 36:2711–2720, 2002) proposed that the soluble extracellular polymeric substances (EPS) are identical to soluble microbial products (SMP) in sludge liquor. In this paper, we compared the physicochemical characteristics of the SMP and soluble EPS from original and aerobically or anaerobically digested wastewater sludge. The surface charges, particle sizes, residual turbidities of polyaluminum chloride (PACl) coagulated supernatant, and chemical compositions of the SMP and soluble EPS containing suspensions were used as comparison index. Experimental results revealed that the particles in SMP and soluble EPS fractions extracted from original wastewater sludge, before and after digestion, were not identical in all physicochemical characteristics herein measured. The current test cannot support the proposal by Laspidou and Rittmann (Water Research 36:2711–2720, 2002) that SMP is identical to the soluble EPS from a wastewater sludge.  相似文献   

5.
Plasmid yield from Acidiphilium strains always had been poor following various standard methods. We adopted some simple modifications in the alkaline lysis procedure to get a better yield of plasmid from these bacteria. An approximately 10- to 20-fold increase in the plasmid yield was achieved when harvested Acidiphilium cells were preincubated 16-20 h at pH 6 in nitrogen-free medium. Another independent approach showed that freezing (-18 to -20 degrees C) of the harvested cells initially and at two subsequent steps in the alkaline lysis procedure of plasmid DNA extraction improved the yield further by 1.5- to 3-fold. The combination of these changes yielded at least 15- to 30-fold more plasmid from various Acidiphilium strains as compared with standard methods.  相似文献   

6.
Bacterial biofilm formation is an important cause of environmental persistence of food-borne pathogens, such as Salmonella Typhimurium. As the ensemble of bacterial cells within a biofilm represents different physiological states, even for monospecies biofilms, gene expression patterns in these multicellular assemblages show a high degree of heterogeneity. This heterogeneity might mask differential gene expression that occurs only in subpopulations of the entire biofilm population when using methods that average expression output. In an attempt to address this problem and to refine expression analysis in biofilm studies, we used the Differential Fluorescence Induction (DFI) technique to gain more insight in S. Typhimurium biofilm gene expression. Using this single cell approach, we were able to identify 26 genetic loci showing biofilm specific increased expression. For a selected number of identified genes, we confirmed the DFI results by the construction of defined promoter fusions, measurement of relative gene expression levels and construction of mutants. Overall, we have shown for the first time that the DFI technique can be used in biofilm research. The fact that this analysis revealed genes that have not been linked with Salmonella biofilm formation in previous studies using different approaches illustrates that no single technique, in casu biofilm formation, is able to identify all genes related to a given phenotype.  相似文献   

7.
Soluble microbial products (SMP) are ubiquitously present in the effluents of biological wastewater treatment systems. In sequencing batch reactor (SBR) systems, effects of influent concentration and temperature on the amount and the molecular weight (MW) distribution of SMP were investigated for the two substrates, glucose and phenol. The values of effluent SMP/S0 of phenol were higher than those of glucose at different influent concentrations and temperatures. It was found that the effluent SMP (Se) was linearly correlated to the influent total organic carbon (TOC) (S0) for both substrates. The slope and intercept of the equation were affected by the temperature. According to the analysis of the MW distribution, it was shown that there exists a bimodal pattern with the majority of SMP having a MW<1 kDa or >10 kDa. The low MW fraction (<1 kDa) amounts to 47.3–70.4% of the effluent SMP. The high MW fraction (>10 kDa) slightly fluctuates in the range of 21.2–32.8% of the effluent SMP.  相似文献   

8.
9.
Soluble microbial products (SMP) generated by activated sludge cultures receiving a mixed feed of phenol and glucose were characterized with respect to molecular weight (MW) distribution, octanol-water partition coefficient (K(ow)), and Microtox toxicity. Short-term batch reactor tests using 14C-labeled substrates were performed to collect SMP derived from each substrate, while long-term tests were performed with SMP accumulated over multiple feed cycles using fed-batch reactors receiving non-labeled substrates. Yield of SMP in the batch tests, 10%-20% for phenol and 2%-5% for glucose, differed for each substrate and was independent of initial concentration. The MW distribution (MWD) of SMP was independent of feed composition, and was bimodal in the < 1 kDa and 10-100 kDa MW ranges for phenol-derived SMP and predominantly < 1 kDa for glucose-derived SMP. In the non-labeled tests, the fraction of SMP of MW > 100 kDa increased with the proportion of glucose in the feed. The K(ow) of phenol-derived SMP was higher compared to glucose-derived SMP, indicating that the phenol-derived SMP were more hydrophobic. This was particularly true at an acidic pH, where the K(ow) was 4.2 +/- 1.0 for phenol-derived SMP versus 0.13 +/- 0.13 for glucose-derived SMP. Toxicity testing indicated that phenol-derived SMP, exerting a mean Microtox inhibition of 1%, were less toxic than phenol itself, and showed little correlation between toxicity and concentration. However, glucose-derived SMP were generally more toxic than glucose itself (a non-toxic substrate), and the toxicity increased linearly with the concentration of SMP.  相似文献   

10.
Soluble microbial products (SMPs) tend to accumulate in the membrane bioreactor (MBR) systems as a consequence of high membrane rejection and apparently low biodegradability within the wastewater treatment system. The extension of the activated sludge models (ASMs) with SMPs, therefore, has received crucial importance in recent days, particularly considering their potential use as indicators of the membrane fouling propensity. This paper presents a critical review of the formation and degradation kinetics of SMP subdivisions that have so far been used for the mathematical modelling of MBR. The paper identified a simplified approach to incorporate the kinetics of the SMP formation and degradation in the general mathematical models of MBR. It suggested that the inclusion of only four additional linear differential equations in the ASM1-SMP integrated mathematical model could simulate well the effluent quality and membrane fouling prediction. The model would also serve as a useful tool in optimizing operation conditions for better treatability and fouling control.  相似文献   

11.
In this work, nitrogen loss in the nitrite oxidation step of the nitrification process in an aerobic‐granule‐based reactor was characterized with both experimental and modeling approaches. Experimental results showed that soluble microbial products (SMP) were released from the nitrite‐oxidizing granules and were utilized as a carbon source by the heterotrophs for denitrification. This was verified by the fluorescence in situ hybridization (FISH) analysis. Microelectrode tests showed that oxygen diffusion limitation did result in an anoxic micro‐zone in the granules and allowed sequential utilization of nitrate as an electron acceptor for heterotrophic denitrification with SMP as a carbon source. To further elucidate the nitrogen loss mechanisms, a mathematic model was formulated to describe the growth of nitrite oxidizers, the formation and consumption of SMP, the anoxic heterotrophic growth on SMP and nitrate, as well as the oxygen transfer and the substrate diffusion in the granules. The results clearly indicate that the heterotrophs grown on the SMP released by the autotrophs are responsible for the nitrogen loss in the nitrifying granules, and give us a better understanding of the aerobic granules for nitrogen removal. Biotechnol. Bioeng. 2011;108: 2844–2852. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Bacterial contaminants from commercial fuel ethanol production facilities were previously shown to form biofilms as mixed cultures under laboratory conditions. In this study, a rapid assay was developed to simultaneously compare isolates for their ability to form biofilms as pure cultures. A total of 10 strains were isolated from a dry-grind fuel ethanol plant that routinely doses with virginiamycin. These were identified by sequence analysis as six strains of Lactobacillus fermentum, two strains of L. johnsonii, and one strain each of L. mucosae and L. amylovorus. Isolates exhibited a range of susceptibility to virginiamycin in a planktonic assay, with MIC’s (minimum inhibitory concentration) of ?0.5-16 μg/ml. Even though all strains were isolated from a mixed culture biofilm, they varied greatly in their ability to form biofilms as pure cultures. Surprisingly, growth as biofilms did not appear to provide resistance to virginiamycin, even if biofilms were grown for 144 h prior to antibiotic challenge.  相似文献   

13.
Infection of Galleria mellonella larvae with the entomopathogenic nematodes Steinernema feltiae (A21 and R strains) and Steinernema glaseri (Dongrae) resulted in several species of bacteria, including the respective bacterial symbiont, Xenorhabdus spp., growing in the infected insect cadavers. These other bacteria were Enterococcus in all three nematode infections studied and Acinetobacter in the S. feltiae infections. The respective populations of these bacteria changed with time. Following infection of G. mellonella larvae with any one of the Steinernema sp., only Enterococcus bacteria were detected initially in the dead larvae. Between 30 and 50h post-infection Xenorhabdus bacteria were detected and concurrent with this Enterococcus population declined to zero. This was probably due to secondary metabolites with antibacterial properties that were produced by Xenorhabdus. In the S. feltiae (both R and A21 strains) infections a third bacterium, Acinetobacter, appeared at about 130h (in S. feltiae A21 infections) or 100h (in S. feltiae R infections) and increased in population size to approximately that of Xenorhabdus. It was demonstrated that Enterococcus, orginating from the G. mellonella digestive tract, was sensitive to the organically soluble antimicrobials produced by Xenorhabdus but Acinetobacter, which was carried by the nematode, was not.  相似文献   

14.
Wang YJ  Liao Q  Wang YZ  Zhu X  Li J 《Bioresource technology》2011,102(13):6902-6908
Photosynthetic bacteria (PSB), Rhodopseudomonas palustris CQK 01, were immobilized on the surface of a thin glass slide in a lab-scale flat panel photobioreactor under different flow rates and substrate concentrations. The morphology, dry weight and thickness of the mature PSB biofilms were determined to reveal the relationship between biofilm formation and hydrogen production performance. The mature biofilm formed at a low flow rate and a high substrate concentration showed a looser structure, these structures of the mature biofilm then affected the H2 production performance of the bioreactor during mature stage. The biofilm formed at a flow rate of 228 ml/h and a substrate concentration of 60 mmol/l exhibited the highest dry weight and optimally porous structure, which is beneficial not only for hydrogen removal from the biofilm but also glucose diffusion into the biofilm, thus significantly boosting the photo-hydrogen production performance.  相似文献   

15.
Numerous fungal morphospecies include cryptic species that routinely are detected by sequencing a few unlinked DNA loci. However, whether the patterns observed by multi-locus sequencing are compatible with genome wide data, such as amplified fragment length polymorphisms (AFLPs), is not well known for fungi. In this study we compared the ability of three DNA loci and AFLP data to discern between cryptic fungal lineages in the three morphospecies Coniophora olivacea, Coniophora arida, and Coniophora puteana. The sequences and the AFLP data were highly congruent in delimiting the morphotaxa into multiple cryptic species. However, while the DNA sequences indicated introgression or hybridization between some of the cryptic lineages the AFLP data did not. We conclude that as few as three polymorphic DNA loci was sufficient to recognize cryptic lineages within the studied Coniophora taxa. However, based on analyses of a few (three) sequenced loci the hybridization could not easily be distinguished from incomplete lineage sorting. Hence, great caution should be taken when concluding about hybridization based on data from just a few loci.  相似文献   

16.

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-015-0347-2) contains supplementary material, which is available to authorized users.  相似文献   

17.
Although microbial metabolome analysis has now become a widely used method, no generally applicable quenching method has been published so far. Either the methods were established for only one defined organism or the metabolite coverage was quite low. In the current work, a novel, reliable, and robust quenching method for different types of organisms is described. Compared with the commonly used quenching procedure with 60% methanol (−50 °C), we obtained improved results for three examined organisms with different cell wall and membrane structures using a 40% ethanol/0.8% sodium chloride solution (−20 °C). Increased metabolite levels were achieved for 60-80% of all identified compounds. Moreover, the estimated standard error of the relative concentrations of 120-160 different substances was only 14 ± 4% compared with 17 ± 3% in unquenched samples and 24 ± 7% in samples quenched with methanol for the different tested organisms.  相似文献   

18.
Membrane fouling by soluble microbial products (SMP) remains one of the limitations for widespread applications of membrane bioreactor (MBR) systems. Over the past two decades, the characteristics and behaviors of SMP have attracted much attention, and efforts have been dedicated to clarify their role in membrane fouling in MBRs. However, to date, there are only few reviews directly relating this area, and the objective of previous reviews is to concentrate on SMP and their implications in biological treatment systems and their effluents. This brief review relating only to SMP-caused membrane fouling evaluation at the fractional level (SMP key components, sub-fractions and hydrophilic and hydrophobic fractions) and at the overall level (SMP overall roles, characteristics and factors) is presented, which could greatly help researchers and engineers to better understand SMP actual contribution to membrane fouling and adopt effective measures to avoid SMP-caused fouling in MBRs.  相似文献   

19.
Galleria mellonella L. larvae were infected with three species (seven strains) of Steinernema spp. or three species (three strains) of Heterorhabditis spp. Infected larvae were incubated at 22, 27, and 32 degrees C. Larvae were dorsally dissected every 6h over a 48-h period. Hemolymph was collected and streaked on tryptic soy agar plates. Several non-symbiotic bacterial species were identified from infected insect cadavers: Enterobacter gergoviae, Vibrio spp., Pseudomonas fluorescens type C, Serratia marcescens, Citrobacter freundii, and Serratia proteomaculans. At 18-24 h incubation, the nematode-associated symbiont occurred almost exclusively. Bacterial associates generally appeared outside the 18-24 h window. Infective juveniles of Steinernema feltiae (Filipjev) (27), Steinernema riobrave Cabanillas, Poinar, and Raulston (Oscar), or Steinernema carpocapsae (Weiser) (Kapow) were left untreated, or surface sterilized using thimerosal, then pipetted under sterile conditions onto tryptic soy agar plates. Several additional species of associated bacteria were identified using this method compared with the less extensive range of species isolated from infected G. mellonella. There was no difference in bacterial species identified from non-sterile or surface sterilized nematodes, suggesting that the bacteria identified originated from either inside the nematode or between second and third stage juvenile cuticles. Infective juveniles of S. feltiae (Cowles), S. carpocapsae (Cowles), and H. bacteriophora Poinar (Cowles) were isolated from field samples. Nematodes were surface-sterilized using sodium hypochlorite, mixed with G. mellonella hemolymph, and pipetted onto Biolog BUG (with blood) agar. Only the relevant symbionts were isolated from the limited number of samples available. The nematodes were then cultured in the laboratory for 14 months (sub-cultured in G. mellonella 7-times). Other Enterobacteriaceae could then be isolated from the steinernematid nematodes including S. marcescens, Salmonella sp., and E. gergoviae, indicating the ability of the nematodes to associate with other bacteria in laboratory culture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号