首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap junctions can exhibit rectification of conductance. Some reports use inequality of coupling coefficients as the first sign of the possible existence of rectification ( [Devor and Yarom, 2002], [Fan et al., 2005], [31], [Mann-Metzer and Yarom, 1999], [Nolan et al., 1999] and [Szabadics et al., 2001]). However, mathematical modeling and simulations of electrotonic coupling between an isolated pair of neurons showed conditions where the coupling coefficients were unreliable indicators of rectification. On the other hand, the transfer resistances were found to be reliable indicators of junctional rectification. The existing mathematical model of cell coupling ( [Bennett, 1966], [Devor and Yarom, 2002] and [Verselis and Veenstra, 2000]) was extended in order to measure rectification of the junctional conductances directly between dual-recorded neurons whether isolated or surrounded by a simulated 3-dimensional network of heterogeneous cells whose gap junctions offered parallel paths for current flow between the recorded neurons. The results showed that the transfer resistances could still detect rectification of the gap junction linking the dual-recorded neurons when embedded in a coupled cell network and that a mathematical model could estimate the conductances in both directions through this gap junction using only data that would be available from real dual-intracellular penetrations which allow electrophysiological recordings and intracellular staining. Rectification of gap junctions in unrecorded cells of a biologically realistic coupled cell network had negligible effects on the voltage responses of the dual-recorded neurons because of minimal current passing through these surrounding cells.  相似文献   

2.
The properties of equilibria and phase synchronization involving burst synchronization and spike synchronization of two electrically coupled HR neurons are studied in this paper. The findings reveal that in the non-delayed system the existence of equilibria can be turned into intersection of two odd functions, and two types of equilibria with symmetry and non-symmetry can be found. With the stability and bifurcation analysis, the bifurcations of equilibria are investigated. For the delayed system, the equilibria remain unchanged. However, the Hopf bifurcation point is drastically affected by time delay. For the phase synchronization, we focus on the synchronization transition from burst synchronization to spike synchronization in the non-delayed system and the effect of coupling strength and time delay on spike synchronization in delayed system. In addition, corresponding firing rhythms and spike synchronized regions are obtained in the two parameters plane. The results allow us to better understand the properties of equilibria, multi-time-scale properties of synchronization and temporal encoding scheme in neuronal systems.  相似文献   

3.
Previously we have shown that during in vivo muscle regeneration differentiating rat primary myoblasts transiently upregulate connexin43 (Cx43) gap junctions and leave cell cycle synchronously. Here, we studied the temporal regulation of Cx expression in relation to functional dye coupling in allogenic primary myoblast cultures using western blotting, immuno-confocal microscopy and dye transfer assays. As in vivo, Cx43 was the only Cx isotype out of Cx26, 32, 37, 40, 43 and 45 found in cultured rat myoblasts by immunostaining. Cultured myoblasts showed similar temporal regulation of Cx43 expression and phenotypic maturation to those regenerating in vivo. Cx43 protein was progressively upregulated in prefusion myoblasts, first by the cytoplasmic assembly in sparse myoblast meshworks and then in cell membrane particles in aligned cells. Dye injection using either Lucifer Yellow alone, Cascade Blue with a non-junction permeant FITC-dextran revealed an extensive gap junction coupling between the sparse interacting myoblasts and a reduced communication between the aligned, but still prefused cells. The aligned myoblasts, uniformly upregulate p21waf1/cip1 and p27kip1 cell cycle control proteins. Taken together, in prefusion myoblasts less membrane-bound Cx43 was found to mediate substantially more efficient dye coupling in the growing cell fraction than those in the aligned post-mitotic myoblasts. These and our in vivo results in early muscle differentiation are consistent with the role of Cx43 gap junctions in synchronizing cell cycle control of myoblasts to make them competent for a coordinated syncytial fusion.  相似文献   

4.
Gumpert AM  Varco JS  Baker SM  Piehl M  Falk MM 《FEBS letters》2008,582(19):2887-2892
Direct cell-cell communication mediated by plasma membrane-spanning gap junction (GJ) channels is vital to all aspects of cellular life. Obviously, GJ intercellular communication (GJIC) requires precise regulation, and it is known that controlled biosynthesis and degradation, and channel opening and closing (gating) are exploited. We discovered that cells internalize GJs in response to various stimuli. Here, we report that GJ internalization is a clathrin-mediated endocytic process that utilizes the vesicle-coat protein clathrin, the adaptor proteins adaptor protein complex 2 and disabled 2, and the GTPase dynamin. To our knowledge, we are first to report that the endocytic clathrin machinery can internalize double-membrane vesicles into cells.  相似文献   

5.
Connexin45 is a gap junction protein which forms channels with unique characteristics. RNA blots demonstrated that connexin45 is expressed in a number of cell lines including WB, SK Hepl, BHK, A7r5, CLEM, and BWEM cells. Connexin45 was further studied in BWEM cells using specific affinity-purified antibodies directed against a synthetic peptide representing amino acids 285–298 of its sequence. Immunofluorescence experiments demonstrated that the BWEM cells expressed both connexin43 and connexin45 and that these connexins colocalized. Connexin45 polypeptide, immunoprecipitated from BWEM cells metabolically labeled with [35S]-methionine, consisted of a predominant 48 kD polypeptide. Connexin45 and connexin43 contained radioactive phosphate when immunoprecipitated from BWEM cells metabolically labeled with [32P]-orthophosphoric acid. This phosphate label was removed from connexin45 by alkaline phosphatase digestion. Treatment of BWEM cells with the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited intercellular passage of microinjected Lucifer yellow. While TPA treatment induced phosphorylation of connexin43 in these cells, it reduced the expression of connexin45. Furthermore, the connexin45 expressed after TPA treatment was not phosphorylated. These results suggest that treatments which alter protein phosphorylation may regulate connexin43 and connexin45 in BWEM cells by different mechanisms.These studies were supported by National Institutes of Health grants HL45466 and EY08368. J.G.L. is supported by a fellowship from the Lucille P. Markey Foundation. E.C.B. is an Established Investigator of the American Heart Association.  相似文献   

6.
Gap junction proteins, connexins, are dynamic polytopic membrane proteins that exhibit unprecedented short half-lives of only a few hours. Consequently, it is well accepted that in addition to channel gating, gap junctional intercellular communication is regulated by connexin biosynthesis, transport and assembly as well as the formation and removal of gap junctions from the cell surface. At least nine members of the 20-member connexin family are known to be phosphorylated en route or during their assembly into gap junctions. For some connexins, notably Cx43, evidence exists that phosphorylation may trigger its internalization and degradation. In recent years it has become apparent that the mechanisms underlying the regulation of connexin turnover are quite complex with the identification of many connexin binding molecules, a multiplicity of protein kinases that phosphorylate connexins and the involvement of both lysosomal and proteasomal pathways in degrading connexins. This paper will review the evidence that connexin phosphorylation regulates, stimulates or triggers gap junction disassembly, internalization and degradation.  相似文献   

7.
8.
During the life cycle of a membrane protein its molecular structure may change and for aggregated proteins this process may be observed on the supramolecular level. Here we demonstrate that this is the case for gap junction channels which maintain cell-cell communication. Freshly synthesized connexins are integrated as hexamers (connexons) into the plasma membrane where they form plaques after pairing with connexons of an attached cell. We inhibited protein trafficking by applying the fungal metabolite brefeldin A (BFA), quantified cell-cell coupling by calcein transfer and fluorescence-activated flow cytometry, and examined the degradation and formation of gap junction plaques by indirect immunofluorescence and immunogold labeling. Under control conditions 50% of the detected plaques were ubiquitylated and less than 10% showed a two-dimensional crystalline packing. One hour after BFA reversal about 60% of the plaques were crystalline and ubiquitylation dropped to 14%. Label for ubiquitin was predominantly found on non-crystalline plaques. We, therefore, conclude that newly formed gap junction plaques are of crystalline morphology which changes to a pleomorphic structure when individual channels are modified during their aging process. This dynamic in plaque morphology correlates with channel inactivation and plaque ubiquitylation.  相似文献   

9.
The 27 kDa protein, a major component of rat liver gap junctions, was shown to be phosphorylated in vitro by protein kinase C. The stoichiometry of the phosphorylation indicated that approx. 0.33 mol phosphate was incorporated per mol 27 kDa protein. Phosphorylation was entirely dependent on the presence of calcium and was virtually specific for serine residues. For comparison, the gap junction protein was also examined for its phosphorylation by cAMP-dependent protein kinase, the extent of phosphorylation being one-tenth that exerted by protein kinase C.  相似文献   

10.
Simultaneous pre- and postsynaptic cell recordings are used to calculate gap junction conductance based on an equivalent electrical circuit of an electrically coupled pair of cells. This calculation is imprecise when recording from a cell pair that is coupled to neighboring cells providing indirect conductance paths between the recorded cells. Despite this imprecision, junctional conductance has been calculated for coupled cell networks during the past 40 years since a more accurate method was lacking. The present study simulated a three-dimensional network of electrically coupled heterogeneous neurons and used mathematical modeling to reduce the complexity to the simplest equations that could more accurately estimate the electrical properties of dual-recorded cells in the network. Analyses of the simulations showed that knowledge of the number of unrecorded cells directly linked to the recorded cells and of the voltage responses of these recorded cells were largely sufficient to accurately predict the direct junctional resistance linking the recorded cells as well as the input resistance of the recorded cells that would exist in the absence of junctional coupling. All model parameters could be obtained from real dual-intracellular penetrations which allow electrophysiological recordings and intracellular staining.  相似文献   

11.
12.
Summary The hepatopancreas of the crayfish, Procambarus clarkii, contains an unusual abundance of gap junctions, suggesting that this tissue might provide an ideal source from which to isolate the arthropod-type of gap junction. A membrane fraction obtained by subcellular fractionation of this organ contained smooth septate junctions, zonulae adhaerentes, gap junctions and pentalaminar membrane structures (pseudo-gap junctions) as determined by electron microscopy. A further enrichment of plasma membranes and gap junctions was achieved by the use of linear sucrose gradients and extraction with 5 mM NaOH. The enrichment of gap junctions correlated with the enrichment of a 31 Kd protein band on polyacrylamide gels. Extraction with 20 mM NaOH or 0.5% (w/v) Sarkosyl NL97 resulted in the disruption and/or solubilization of gap junctions. Negative staining revealed a uniform population of 9.6 nm diameter subunits within the gap junctions with an apparent sixfold symmetry. Using antisera to the major gap junctional protein of rat liver (32 Kd) and to the lens membrane protein (MP 26), we failed to detect any homologous antigenic components in the arthropod material by immunoblotting-enriched gap junction fractions or by immunofluorescence on tissue sections. The enrichment of another membrane structure (pseudo-gap junctions), closely resembling a gap junction, correlated with the enrichment of two protein bands, 17 and 16Kd, on polyacrylamide gels. These structures appeared to have originated from intracellular myelin-like figures in phagolysosomal structures. They could be distinguished from gap junctions on the basis of their thickness, detergent-alkali insolubility, and lack of association with other plasma membrane structures, such as the septate junction. Pseudo-gap junctions may be related to a class of pentalaminar contacts among membranes involved in intracellular fusion in many eukaryotic cell types. We conclude that pseudo-gap junctions and gap junctions are different cellular structures, and that gap junctions from this arthropod tissue are uniquely different from mammalian gap junctions of rat liver in their detergentalkali solubility, equilibrium density on sucrose gradients, and protein content (antigenic properties).  相似文献   

13.
In the glandular stomach, gap junctional intercellular communication (GJIC) plays an important role in the gastric mucosal defense system, and loss of GJIC is associated with ulcer formation. In spite of the high incidence of gastric ulcers in horses, particularly at pars nonglandularis, the presence of gap junctions in the equine stomach has not yet been studied. The objective was to obtain basic data on the distribution of gap junction protein connexin 32 (Cx32) in the different regions of normal equine gastric mucosa. Samples of mucosa were taken from seven horses at cardiac, fundic, and pyloric region and pars nonglandularis. To detect Cx32, immunohistochemical staining and Western blot analysis were performed. Corresponding mRNA was shown by RT-PCR and localised in tissue sections by in situ hybridisation. Cx32 was found in the glandular regions, whereas it was not detectable in squamous mucosa. Within the glandular epithelium, Cx32 was abundant in surface and foveolar cells and decreased towards the proliferative zone of the glands. These results suggest that gap junctions develop during the maturation of surface cells. Whether the lack of Cx32 at pars nonglandularis contributes to its susceptibility for developing ulcers, has to be further elucidated.  相似文献   

14.
《FEBS letters》2014,588(8):1430-1438
Intracellular Ca2+ activated calmodulin (CaM) inhibits gap junction channels in the low nanomolar to high micromolar range of [Ca2+]i. This regulation plays an essential role in numerous cellular processes that include hearing, lens transparency, and synchronized contractions of the heart. Previous studies have indicated that gap junction mediated cell-to-cell communication was inhibited by CaM antagonists. More recent evidence indicates a direct role of CaM in regulating several members of the connexin family. Since the intracellular loop and carboxyl termini of connexins are largely “invisible” in electron microscopy and X-ray crystallographic structures due to disorder in these domains, peptide models encompassing the putative CaM binding sites of several intracellular domains of connexins have been used to identify the Ca2+-dependent CaM binding sites of these proteins. This approach has been used to determine the CaM binding affinities of peptides derived from a number of different connexin-subfamilies.  相似文献   

15.
Gap junctions were initially described morphologically, and identified as semi-crystalline arrays of channels linking two cells. This suggested that they may represent an amenable target for electron and X-ray crystallographic studies in much the same way that bacteriorhodopsin has. Over 30 years later, however, an atomic resolution structural solution of these unique intercellular pores is still lacking due to many challenges faced in obtaining high expression levels and purification of these structures. A variety of microscopic techniques, as well as NMR structure determination of fragments of the protein, have now provided clearer and correlated views of how these structures are assembled and function as intercellular conduits. As a complement to these structural approaches, a variety of mutagenic studies linking structure and function have now allowed molecular details to be superimposed on these lower resolution structures, so that a clearer image of pore architecture and its modes of regulation are beginning to emerge.  相似文献   

16.
17.
Memory in the nervous system is essentially a network effect, resulting from activity-dependent synaptic modification in a network of neurons. Like the nervous system, the heart is a network of cardiac cells electrically coupled by gap junctions. The heart too has memory, termed cardiac memory, whereby the effect of an external electrical activation persists long after the presentation of stimulus is terminated. We have earlier proposed that adaptation of gap junctions, as a function of membrane voltages of the cells that are coupled by the gap junctions, is related to cardiac memory [V.S. Chakravarthy, J. Ghosh, On Hebbian-like adaption in heart muscle: a proposal for "Cardiac Memory", Biol. Cybern. 76 (1997) 207, J. Krishnan, V.S. Chakravarthy, S. Radhakrishnan, On the role of gap junctions on cardiac memory effect, Comput. Cardiol. 32 (2005) 13]. Using the proposed mechanism, we demonstrate memory effect using computational models of interacting cell pairs. In this paper, we address the biological validity of the proposed mechanism of gap junctional adaptation. It is known from electrophysiology of gap junctions that the conductance of these channels adapts as a function of junctional voltage. At a first sight, this form of voltage dependence seems to be at variance with the form required by our mechanism. But we show, with the help of a theoretical model, that the proposed mechanism of voltage-dependent adaptation of gap junctions, is compatible with the known voltage-sensitivity of gap junctions observed in electrophysiological studies. Our analysis suggests a new significance of the voltage-sensitivity of gap junctions and its possible link to the phenomenon of cardiac memory.  相似文献   

18.
19.
Gap junction channels may be comprised of either connexin or pannexin proteins (innexins and pannexins). Membrane topologies of both families are similar, but sequence similarity is lacking. Recently, connexin-like sequences have been identified in mammalian and zebrafish genomes that have only four conserved cysteines in the extracellular domains (Cx23), a feature of the pannexins. Phylogenetic analyses of the non-canonical "C4" connexins reveal that these sequences are indeed connexins. Functional assays reveal that the Cx23 gap junctions are capable of sharing neurobiotin, and further, that Cx23 connexins form hemichannels in vitro.  相似文献   

20.
The gap junction communication in Sertoli cells from immature rat testes, cultured either in absence or in presence of follicle-stimulating hormone (FSH), was studied by microinjection of a fluorescent dye and by Fluorescence Recovery After Photobleaching (gapFRAP).The cells cultured for 2–4 days in the absence of FSH showed a flattened epithelial-like appearance. They were poorly coupled, as judged by the low frequency of cell-to-cell spread of microinjected Lucifer Yellow, and by the value of the rate constant of dye transfer (k) estimated in gapFRAP experiments. However, when two different subpopulations of cells were separately analyzed, namely the cells forming small groups contacting over part of their circumference (adjoining cells), and the cells arranged in tight clusters, we found that the value of k in the latter group was much higher, reaching about 75% of that obtained in the presence of FSH.The cells cultured for two days in a medium containing ovine FSH underwent striking morphological changes and presented a rounded, fibroblast-like appearance. They were arranged in networks or in clusters. The frequency of cell-to-cell dye diffusion after microinjection and the rate constant of dye transfer were rapidly increased to the same final level by FSH, although they were initially different in these two groups. A concentration dependence of k, in the range 0.05 to 3 ng/ml, was observed in the cells in networks, contrasting with an all-or-none increase in the cells in clusters.Two days after FSH withdrawal, the dye transfer constant returned to prestimulation control values in the cells in clusters, but not in the cells in networks, which maintained a stable degree of coupling comparable to that of the unstimulated cells in clusters. This observation suggests (i) that an initial promoting effect of FSH already exists in the immature rat testis, which is preserved after enzymatic treatment in the cell clusters, but not in the more dispersed cells, and (ii) that the decreased junctional coupling is re-established in the dispersed cells by FSH, through a synthesis or a membrane insertion of connexin.The effects of FSH were mimicked by a brief exposure to 1 m m dibutyryl-cyclicAMP, but not to 10 n m human chorionic gonadotropin (hCG), indicating that the gap junction communication in Sertoli cells is upregulated by FSH through a specific membrane receptor, with cyclicAMP acting as a second messenger.This work was supported by grants from the CNRS and the DRED du Ministère de l'Education Nationale, and the Fondation Langlois. Frédérique Pluciennik was a recipient of the Dufrenoy scholarship, given by l'Académie d'Agriculture de France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号