首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the influence of functional responses (Lotka-Volterra or Holling type), initial topological web structure (randomly connected or niche model), adaptive behavior (adaptive foraging and predator avoidance) and the type of constraints on the adaptive behavior (linear or nonlinear) on the stability and structure of food webs. Two kinds of stability are considered: one is the network robustness (i.e., the proportion of species surviving after population dynamics) and the other is the species deletion stability. When evaluating the network structure, we consider link density as well as the trophic level structure. We show that the types of functional responses and initial web structure do not have a large effect on the stability of food webs, but foraging behavior has a large stabilizing effect. It leads to a positive complexity-stability relationship whenever higher "complexity" implies more potential prey per species. The other type of adaptive behavior, predator avoidance behavior, makes food webs only slightly more stable. The observed link density after population dynamics depends strongly on the presence or absence of adaptive foraging, and on the type of constraints used. We also show that the trophic level structure is preserved under population dynamics with adaptive foraging.  相似文献   

2.
The adaptive food-web hypothesis suggests that an adaptive foraging switch inverses the classically negative complexity-stability relationships of food webs into positive ones, providing a possible resolution for the long-standing paradox of how populations persist in a complex natural food web. However, its applicability to natural ecosystems has been questioned, because the positive relationship does not emerge when a niche model, a realistic "benchmark" of food-web models, is used. I hypothesize that, in the niche model, increasing connectance influences the fraction of basal species to destabilize the system and this masks the inversion of the negative complexity-stability relationship in the presence of adaptive foraging. A model analysis shows that, if this confounding effect is eliminated, then, even in a niche model, a population is more likely to persist in a more complex food web. This result supports the robustness of adaptive food-web hypothesis and reveals the condition in which the hypothesis should be tested.  相似文献   

3.
基于土壤食物网的生态系统复杂性-稳定性关系研究进展   总被引:3,自引:0,他引:3  
陈云峰  唐政  李慧  韩雪梅  李钰飞  胡诚 《生态学报》2014,34(9):2173-2186
复杂性-稳定性关系是生态学核心问题之一。作为模式食物网,土壤食物网在探索生态系统复杂性-稳定性关系中起了极大的作用。总结了以Moore、de Ruiter、Neutel等为代表的理论生态学家以土壤食物网为工具研究生态系统复杂性-稳定性关系的方法、结论及不足之处,并展望了未来的发展方向。Moore、de Ruiter、Neutel等将土壤食物网功能群生物量数据、土壤食物网Lotka-Volterra模型和面向过程模型三者结合起来,描述相互作用强度大小格局、分室、能流组织形式等复杂性特征;将土壤食物网Lotka-Volterra模型与群落矩阵结合起来分析局域稳定性,进而探讨生态系统复杂性-稳定性关系的一般规律。在此基础上,Moore、de Ruiter、Neutel等证明了与随机食物网相比,真实食物网的相互作用强度格局、分室等复杂性特征提高了生态系统稳定性,生产力与稳定性共同决定了食物链的长度,并指出建立在平衡态基础上的静态土壤食物网模型在探索生态系统复杂性-稳定性关系方面具有较大的不足,动态土壤食物网是未来以土壤食物网为工具研究生态系统复杂性-稳定性关系的发展方向。  相似文献   

4.
Food-web complexity emerging from ecological dynamics on adaptive networks   总被引:1,自引:0,他引:1  
Food webs are complex networks describing trophic interactions in ecological communities. Since Robert May's seminal work on random structured food webs, the complexity-stability debate is a central issue in ecology: does network complexity increase or decrease food-web persistence? A multi-species predator-prey model incorporating adaptive predation shows that the action of ecological dynamics on the topology of a food web (whose initial configuration is generated either by the cascade model or by the niche model) render, when a significant fraction of adaptive predators is present, similar hyperbolic complexity-persistence relationships as those observed in empirical food webs. It is also shown that the apparent positive relation between complexity and persistence in food webs generated under the cascade model, which has been pointed out in previous papers, disappears when the final connection is used instead of the initial one to explain species persistence.  相似文献   

5.
对自然生态系统的观察给人们以复杂的群落更稳定的直观印象, 但数学模型却得出了截然相反的结论。这一“悖论”使得复杂性-稳定性研究自20世纪70年代以来成为长期的热点。本文对这一领域的数学模型研究进行简要综述。首先对这一论题进行概念剖析, 然后将各类模型分为线性和非线性两大类, 前者即群落矩阵法, 后者包括相互作用矩阵法、复杂网络数值模拟法和食物网构件动力学法。它们分别基于不同的群落构建方法和稳定性判断标准, 探求各物种是如何相互作用并实现共存的。总体而言, 在随机构建的群落模型中, 多样性和连接度的增长不利于系统稳定; 而在更接近真实自然群落的模型中, 相互作用方式、网络拓扑结构、相互作用强度分布等方面的机制提供了稳定效应, 按此组织的生态网络可达到很高的复杂度。然而, 复杂性-稳定性的研究还远未结束, 当前的模型仍不足以反映自然群落中的复杂相互作用, 稳定性的概念也有待拓展。对这一议题的深入研究在生态学理论和生态系统管理实践方面都具有重大价值。  相似文献   

6.
The mechanism for maintaining complex food webs has been a central issue in ecology because theory often predicts that complexity (higher the species richness, more the interactions) destabilizes food webs. Although it has been proposed that prey anti-predator defence may affect the stability of prey-predator dynamics, such studies assumed a limited and relatively simpler variation in the food-web structure. Here, using mathematical models, I report that food-web flexibility arising from prey anti-predator defence enhances community-level stability (community persistence and robustness) in more complex systems and even changes the complexity-stability relationship. The model analysis shows that adaptive predator-specific defence enhances community-level stability under a wide range of food-web complexity levels and topologies, while generalized defence does not. Furthermore, while increasing food-web complexity has minor or negative effects on community-level stability in the absence of defence adaptation, or in the presence of generalized defence, in the presence of predator-specific defence, the connectance-stability relationship may become unimodal. Increasing species richness, in contrast, always lowers community-level stability. The emergence of a positive connectance-stability relationship however necessitates food-web compartmentalization, high defence efficiency and low defence cost, suggesting that it only occurs under a restricted condition.  相似文献   

7.
Recent modeling studies exploring the effect of consumers’ adaptivity in diet composition on food web complexity invariably suggest that adaptivity in foraging decisions of consumers makes food webs more complex. That is, it allows for survival of a higher number of species when compared with non-adaptive food webs. Population-dynamical models in these studies share two features: parameters are chosen uniformly for all species, i.e. they are species-independent, and adaptive foraging is described by the search image model. In this article, we relax both these assumptions. Specifically, we allow parameters to vary among the species and consider the diet choice model as an alternative model of adaptive foraging. Our analysis leads to three important predictions. First, for species-independent parameter values for which the search image model demonstrates a significant effect of adaptive foraging on food web complexity, the diet choice model produces no such effect. Second, the effect of adaptive foraging through the search image model attenuates when parameter values cease to be species-independent. Finally, for the diet choice model we observe no (significant) effect of adaptive foraging on food web complexity. All these observations suggest that adaptive foraging does not always lead to more complex food webs. As a corollary, future studies of food web dynamics should pay careful attention to the choice of type of adaptive foraging model as well as of parameter values.  相似文献   

8.
The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability.  相似文献   

9.
Previous studies have shown that high-resolution, empirical food webs possess a non-random network structure, typically characterized by uniform or exponential degree distributions. However, the empirical food webs that have been investigated for their structural properties represent local communities that are only a subset of a larger pool of regionally coexisting species. Here, we use a simple model to investigate the effects of regional food web structure on local food webs that are assembled by two simple processes: random immigration of species from a source web (regional food web), and random extinction of species within the local web. The model shows that local webs with non-random degree distributions can arise from randomly structured source webs. A comparison of local webs assembled from randomly structured source webs with local webs assembled from source webs generated by the niche model shows that the former have higher species richness at equilibrium, but have a nonlinear response to changing extinction rates. These results imply that the network structure of regional food webs can play a significant role in the assembly and dynamics of local webs in natural ecosystems. With natural landscapes becoming increasingly fragmented, understanding such structure may be a necessary key to understanding the maintenance and stability of local species diversity.  相似文献   

10.
11.
Plant–animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short‐term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.  相似文献   

12.
Pollination systems are recognized as critical for the maintenance of biodiversity in terrestrial ecosystems. Therefore, the understanding of mechanisms that promote the integrity of those mutualistic assemblages is an important issue for the conservation of biodiversity and ecosystem function. In this study we present a new population dynamics model for plant–pollinator interactions that is based on the consumer–resource approach and incorporates a few essential features of pollination ecology. The model was used to project the temporal dynamics of three empirical pollination network, in order to analyze how adaptive foraging of pollinators (AF) shapes the outcome of community dynamics in terms of biodiversity and network robustness to species loss. We found that the incorporation of AF into the dynamics of the pollination networks increased the persistence and diversity of its constituent species, and reduced secondary extinctions of both plants and animals. These findings were best explained by the following underlying processes: 1) AF increased the amount of floral resources extracted by specialist pollinators, and 2) AF raised the visitation rates received by specialist plants. We propose that the main mechanism by which AF enhanced those processes is (trophic) niche partitioning among animals, which in turn generates (pollen vector) niche partitioning among plants. Our results suggest that pollination networks can maintain their stability and diversity by the adaptive foraging of generalist pollinators.  相似文献   

13.

Background

We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.

Methodology/Principal Findings

We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.

Conclusions/Significance

With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs.  相似文献   

14.
Structural sensitivity, namely the sensitivity of a model dynamics to slight changes in its mathematical formulation, has already been studied in some models with a small number of state variables. The aim of this study is to investigate the impact of structural sensitivity in a food web model. Especially, the importance of structural sensitivity is compared to that of trophic complexity (number of species, connectance), which is known to strongly influence food web dynamics. Food web structures are built using the niche model. Then food web dynamics are modeled using several type II functional responses parameterized to fit the same predation fluxes. Food web persistence was found to be mostly determined by trophic complexity. At the opposite, even if food web connectance promotes equilibrium dynamics, their occurrence is mainly driven by the choice of the functional response. These conclusions are robust to changes in some parameter values, the fitting method and some model assumptions. In a one-prey/one-predator system, it was shown that the possibility that multiple stable states coexist can be highly structural sensitive. Quantifying this type of uncertainty at the scale of ecosystem models will be both a natural extension to this work and a challenging issue.  相似文献   

15.
16.
We have analysed mechanisms that promote the emergence of complex structures in evolving model food webs. The niche model is used to determine predator-prey relationships. Complexity is measured by species richness as well as trophic level structure and link density. Adaptive dynamics that allow predators to concentrate on the prey species they are best adapted to lead to a strong increase in species number but have only a small effect on the number and relative occupancy of trophic levels. The density of active links also remains small but a high number of potential links allows the network to adjust to changes in the species composition (emergence and extinction of species). Incorporating effects of body size on individual metabolism leads to a more complex trophic level structure: both the maximum and the average trophic level increase. So does the density of active links. Taking body size effects into consideration does not have a measurable influence on species richness. If species are allowed to adjust their foraging behaviour, the complexity of the evolving networks can also be influenced by the size of the external resources. The larger the resources, the larger and more complex is the food web it can sustain. Body size effects and increasing resources do not change size and the simple structure of the evolving networks if adaptive foraging is prohibited. This leads to the conclusion that in the framework of the niche model adaptive foraging is a necessary but not sufficient condition for the emergence of complex networks. It is found that despite the stabilising effect of foraging adaptation the system displays elements of self-organised critical behaviour.  相似文献   

17.
A robust food web is one which suffers few secondary extinctions after primary species losses. While recent research has shown that a food web with parasitism is less robust than one without, it still remains unclear whether the reduction in robustness is due to changes in network complexity or unique characteristics associated with parasitism. Here, using several published food webs, simulation experiments with different food web models and extinction scenarios were conducted to elucidate how such reduction can be achieved. Our results show that, regardless of changes in network complexity and preferential parasitism, the reduction in food web robustness is mainly due to the life cycle constraint of parasites. Our findings further demonstrate that parasites are prone to secondary extinctions and that their extinctions occur earlier than those involving free-living species. These findings suggest that the vulnerable nature of parasites to species loss makes them highly sensitive indicators of food web integrity.  相似文献   

18.
We present a graph theoretic model of analysing food web structure called regular equivalence. Regular equivalence is a method for partitioning the species in a food web into "isotrophic classes" that play the same structural roles, even if they are not directly consuming the same prey or if they do not share the same predators. We contrast regular equivalence models, in which two species are members of the same trophic group if they have trophic links to the same set of other trophic groups, with structural equivalence models, in which species are equivalent if they are connected to the exact same other species. Here, the regular equivalence approach is applied to two published food webs: (1) a topological web (Malaysian pitcher plant insect food web) and (2) a carbon-flow web (St. Marks, Florida seagrass ecosystem food web). Regular equivalence produced a more satisfactory set of classes than did the structural approach, grouping basal taxa with other basal taxa and not with top predators. Regular equivalence models provide a way to mathematically formalize trophic position, trophic group and trophic niche. These models are part of a family of models that includes structural models used extensively by ecologists now. Regular equivalence models uncover similarities in trophic roles at a higher level of organization than do the structural models. The approach outlined is useful for measuring the trophic roles of species in food web models, measuring similarity in trophic relations of two or more species, comparing food webs over time and across geographic regions, and aggregating taxa into trophic groups that reduce the complexity of ecosystem feeding relations without obscuring network relationships. In addition, we hope the approach will prove useful in predicting the outcome of predator-prey interactions in experimental studies.  相似文献   

19.
Few models concern how environmental variables such as temperature affect community structure. Here, we develop a model of how temperature affects food web connectance, a powerful driver of population dynamics and community structure. We use the Arrhenius equation to add temperature dependence of foraging traits to an existing model of food web structure. The model predicts potentially large temperature effects on connectance. Temperature-sensitive food webs exhibit slopes of up to 0.01 units of connectance per 1°C change in temperature. This corresponds to changes in diet breadth of one resource item per 2°C (assuming a food web containing 50 species). Less sensitive food webs exhibit slopes down to 0.0005, which corresponds to about one resource item per 40°C. Relative sizes of the activation energies of attack rate and handling time determine whether warming increases or decreases connectance. Differences in temperature sensitivity are explained by differences between empirical food webs in the body size distributions of organisms. We conclude that models of temperature effects on community structure and dynamics urgently require considerable development, and also more and better empirical data to parameterize and test them.  相似文献   

20.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号