共查询到20条相似文献,搜索用时 15 毫秒
1.
Fighting for food: a dynamic version of the Hawk-Dove game 总被引:2,自引:0,他引:2
Summary The Hawk-Dove game (Maynard Smith, 1982) has been used to analyse conflicts over resources such as food. At the evolutionarily stable strategy (ESS), either a proportionp* of animals always play Hawk, or each animal has a probabilityp* of playing Hawk. We modify the standard Hawk-Dove game to include a state variable,x, that represents the animal's level of energy reserves. A strategy is now a rule for choosing an action as a function ofx and time of day. We consider a non-reproductive period and adopt the criterion of minimizing mortality over this period. We find the ESS, which has the form play Hawk if reserves are belowc* (t) at timet, otherwise play Dove. This ESS is very different from the ESS in the standard Hawk-Dove game. It is a pure ESS that depends on the animal's state and on time. Furthermore, it is characterized by the strong condition that any single mutant that does not adopt the ESS suffers a reduction in fitness. The standard Hawk-Dove game assumes pay-offs that are related to fitness; our approach starts from a definition of fitness and derives the pay-offs in the process of finding the ESS. When the environment becomes worse (e.g. food becomes less reliable or energy expenditure increases) the ESS changes in such a way as to increase the proportion of animals that will play Hawk. 相似文献
2.
The jumps in population size due to the occurrence of an unfavorable physical environment (e.g. the effects of periodic climate disaster on the population size), or due to the intrinsic physiological and reproductive mechanisms of the population (e.g. the seasonal reproduction of most animal populations), can be called impulsive perturbations. A two-phenotype evolutionary game dynamics with impulsive effects is investigated. The main goal is to show how the evolutionary game dynamics is affected by the impulsive perturbations. The results show that the impulsive perturbations not only result in periodic behavior, but also it is possible that an ESS strategy based on the traditional concept of evolutionary stability can be replaced successfully by a non-ESS strategy. 相似文献
3.
4.
David M. Ramsey 《Journal of theoretical biology》2010,266(4):675-690
This article presents a game theoretic model of parental care which models the feedback between patterns of care and the operational sex ratio. It is assumed here that males can be in one of two states: searching for a mate or breeding (including caring for their offspring). Females can be in one of three states: receptive (searching), non-receptive or breeding. However, these sets of states can be adapted to the physiology of a particular species. The length of time that an individual remains in the breeding state depends on the level of care an individual gives. When in the searching state, individuals find partners at a rate dependent on the proportion of members of the opposite sex searching. These rates are defined to satisfy the Fisher condition that the total number of offspring of males equals the total number of offspring of females. The operational sex ratio is not defined exogenously, but can be derived from the adult sex ratio and the pattern of parental care. Pure strategy profiles and so-called single sex stable polymorphisms, in which behaviour is varied within one sex, are derived analytically. The difference between mixed evolutionarily stable strategies and stable polymorphisms within this framework is highlighted. The effects of various physiological and demographic parameters on patterns of care are considered. 相似文献
5.
Recently several papers that model parasitic egg-laying by birds in the nests of others of their own species have been published. Whilst these papers are concerned with answering different questions, they approach the problem in a similar way and have a lot of common features. In this paper a framework is developed which unifies these models, in the sense that they all become special cases of a more general model. This is useful for two main reasons; firstly in order to aid clarity, in that the assumptions and conclusions of each of the models are easier to compare. Secondly it provides a base for further similar models to start from. The basic assumptions for this framework are outlined and a method for finding the ESSs of such models is introduced. Some mathematical results for the general, and more specific, models are considered and their implications discussed. In addition we explore the biological consequences of the results that we have obtained and suggest possible questions which could be investigated using models within or very closely related to our framework.M. Broom is also a member of the Centre for the Study of Evolution at the University of Sussex. 相似文献
6.
Vlastimil K?ivan 《Journal of theoretical biology》2010,267(4):486-494
In this article the patch and diet choice models of the optimal foraging theory are reanalyzed with respect to evolutionary stability of the optimal foraging strategies. In their original setting these fundamental models consider a single consumer only and the resulting fitness functions are both frequency and density independent. Such fitness functions do not allow us to apply the classical game theoretical methods to study an evolutionary stability of optimal foraging strategies for competing animals. In this article frequency and density dependent fitness functions of optimal foraging are derived by separation of time scales in an underlying population dynamical model and corresponding evolutionarily stable strategies are calculated. Contrary to the classical foraging models the results of the present article predict that partial preferences occur in optimal foraging strategies as a consequence of the ecological feedback of consumer preferences on consumer fitness. In the case of the patch occupation model these partial preferences correspond to the ideal free distribution concept while in the case of the diet choice model they correspond to the partial inclusion of the less profitable prey type in predators diet. 相似文献
7.
Superparasitism refers to a female parasitoid laying an egg in a host already parasitized by a conspecific. In solitary species, only one offspring per host is expected to complete development, hence the game. Hosts are often clumped in patches and several females exploiting such an aggregate of resource make its state change over time, hence the dynamical character of the game. Two coupled questions arise: (i) Is it worth accepting a parasitized host? (ii) When to leave the host patch? Through these decisions (i) the competition for healthy hosts and (ii) the trade-off between leaving in quest of a better patch and staying to make the patch less profitable for other parasitoids (this is a way to lower superparasitism likely to occur after having left the patch) are addressed. The aim of this work is to characterize a strategy that would be evolutionarily relevant in such a situation, as it directly concerns females' reproductive success. Investigating a (synchronous) nonzero-sum two-player differential game allows us to characterize candidate dynamic evolutionarily stable policies in terms of both oviposition and patch-leaving decisions. For that matter, the game is (in the most part of the parameter space) completely solved if the probability that superparasitism succeeds is assumed to be close to one-half, a fair value under direct competition. The strategic equilibrium consists, for each females, in (i) superparasitizing consistently upon arrival on the patch, and (ii) leaving when the loss of fitness due to superparasitism likely to occur after its departure is reduced to zero. The competing females are thus expected to leave the patch as they arrived: synchronously. Superparasitism does not necessarily lead to a war of attrition. 相似文献
8.
Horn's model is generalized to state that the optimal pattern of distribution for foragers will correlate with the degree of resource patchiness; in particular (1) where resource attributes are less patchy, the optimal distribution for foragers is to be dispersed, and (2) where resource attributes are more patchy, the optimal distribution for foragers is to be aggregated. Optimality is assessed as the minimum round-trip distance from the forager's home base to a resource item. Patchiness is assessed according to the state taken by any of four resource attributes: dispersion (in space), supply (in time), particle size, and lasting properties. Horn's original contrast between (1) stable and evenly dispersed resources, and (2) mobile and clumped resources is shown to have been internally contradictory; that is, the optimal distribution for foragers would have been the same in both cases. 相似文献
9.
Previous papers have modelled the behaviour of populations which are subject to kleptoparasitism, and found those ecological situations in which kleptoparasitism should occur. Individuals were considered to be in one of several states, and an equilibrium distribution for the population was found. It was then assumed, for analytical purposes but without proof, that the population was actually in that equilibrium. In this paper, we show that the equilibrium is a stable one, and that it is reached in a relatively short time for all reasonable values of the ecological parameters. Thus, a population may be expected to spend most of the time in equilibrium, and this assumption of these previous works is justified.Research of the first author supported by EPSRC.The authors are also members of The Centre for the Study of Evolution, at the University of Sussex. 相似文献
10.
We present an individual-based model of a group of foraginganimals. Individuals can obtain food either by discovering itthemselves or by stealing it from others (kleptoparasitism).Given that challenging another individual for a discovered fooditem costs time (which could otherwise be spent searching foran undiscovered item), attempting to steal from another maynot always be efficient We show that there is generally a uniquestrategy that maximizes uptake ratealways or never challengingothers. For any combination of parameter values, we can identifywhich strategy is appropraite. As a corollary to this, we predictthat small changes in ecolgical conditions can, under some circumstances,cause a dramatic change in the aggressive behavior of individuals.Further, we investigate situations where searching for undiscoveredfood and searching for potential opportunities for stealingare mutually exclusive activities (i.e., success at one canonly be improved at the expense of the other). Using game theory,we are able to find the evolutionarily stable strategy for investmentin these two activities in terms of the ecological parametersof the model. 相似文献
11.
Summary The reproductive phenology of the freshwater copepod Diaptomus sanguineus differs markedly between populations residing in two Rhode Island ponds. In a permanent pond the population switches abruptly from making subitaneous (immediately hatching) eggs to diapausing eggs at the end of March each year. In contrast, a temporary pond population switches egg types in May, returns to production of subitaneous eggs in June, and concludes the reproductive season by making diapausing eggs in July. An ESS model suggests that the pattern of diapause expected of a copepod population is a function of annual variation in the onset of harsh conditions (catastrophe date). When variation is relatively low, the superior strategy is for diapause to begin a constant period before the mean catastrophe date. When variation is high, females should make first subitaneous eggs and then diapausing eggs irrespective of the expected catastrophe date. With discrete generations, such a population would alternate between egg types. In the permanent pond, variation of catastrophe date the spring onset of planktivory by sunfish is low, whereas in the temporary pond variation of the catastrophe (pond drying) is high. The model predicts well the phenology of the two copepod populations.In the research reported here, we tested the hypothesis that copepods from the permanent pond, which switch to diapause at the same time every year, are cued by the environment to begin diapause (i.e. by photoperiod, temperature, or both), whereas those from the temporary pond make both egg types regardless of environmental conditions. In opposition to our hypothesis, experimental results indicate that diapause in both populations is cued by the environment. The distinct reproductive phenologies documented in the two populations apparently result from the copepods responding to different environmental cues, rather than one being responsive to the environment while the other is not. 相似文献
12.
《Journal of biological dynamics》2013,7(3):249-271
We examine the evolutionary stability of strategies for dispersal in heterogeneous patchy environments or for switching between discrete states (e.g. defended and undefended) in the context of models for population dynamics or species interactions in either continuous or discrete time. There have been a number of theoretical studies that support the view that in spatially heterogeneous but temporally constant environments there will be selection against unconditional, i.e. random, dispersal, but there may be selection for certain types of dispersal that are conditional in the sense that dispersal rates depend on environmental factors. A particular type of dispersal strategy that has been shown to be evolutionarily stable in some settings is balanced dispersal, in which the equilibrium densities of organisms on each patch are the same whether there is dispersal or not. Balanced dispersal leads to a population distribution that is ideal free in the sense that at equilibrium all individuals have the same fitness and there is no net movement of individuals between patches or states. We find that under rather general assumptions about the underlying population dynamics or species interactions, only such ideal free strategies can be evolutionarily stable. Under somewhat more restrictive assumptions (but still in considerable generality), we show that ideal free strategies are indeed evolutionarily stable. Our main mathematical approach is invasibility analysis using methods from the theory of ordinary differential equations and nonnegative matrices. Our analysis unifies and extends previous results on the evolutionary stability of dispersal or state-switching strategies. 相似文献
13.
Tatsuya Togashi Yukio Sakisaka Tatsuo Miyazaki Masaru Nagisa Nariyuki Nakagiri Jin Yoshimura Kei-ichi Tainaka Paul Alan Cox John L. Bartelt 《Population Ecology》2009,51(1):83-88
An ESS model to better understand the evolutionary dynamics of a primitive non-mating type gamete size was developed with
reference to the PBS (Parker, Baker and Smith’s) theory, which was based on total numbers of zygotes formed and the zygote
survival rates. We did not include mating types since it has been suggested that primitive mating systems did not have mating
types. As input parameters, we used experimental data on gamete motility of marine green algae. Based on hard sphere collision
mechanics, we detailed the fertilization kinetics of gametes that swim in water prior to fusing with their partners through
a set of coupled, non-linear differential equations. These equations were integrated numerically using typical values of the
constant parameters. To estimate the relative zygote survival rate, we used a function that is sigmoid in shape and examined
some evolutionarily stable strategies in mating systems that depend on optimizing values of the invasion success ratio. 相似文献
14.
When faced with limited resources, organisms have to determine how to allocate their resources to maximize fitness. In the presence of parasites, hosts may be selected for their ability to balance between the two competing needs of reproduction and immunity. These decisions can have consequences not only for host fitness, but also for the ability of parasites to persist within the population, and for the competitive dynamics between different host species. We develop two mathematical models to investigate how resource allocation strategies evolve at both population and metapopulation levels. The evolutionarily stable strategy (ESS) at the population level is a balanced investment between reproduction and immunity that maintains parasites, even though the host has the capacity to eliminate parasites. The host exhibiting the ESS can always invade other host populations through parasite-mediated competition, effectively using the parasites as biological weapons. At the metapopulation level, the dominant strategy is sometimes different from the population-level ESS, and depends on the ratio of local extinction rate to host colonization rate. This study may help to explain why parasites are as common as they are, and can serve as a modeling framework for investigating parasite-mediated ecological invasions. Furthermore, this work highlights the possibility that the ‘introduction of enemies’ process may facilitate species invasion. 相似文献
15.
In this paper, with the method of adaptive dynamics and geometric technique, we investigate the adaptive evolution of foraging-related phenotypic traits in a predator-prey community with trade-off structure. Specialization on one prey type is assumed to go at the expense of specialization on another. First, we identify the ecological and evolutionary conditions that allow for evolutionary branching in predator phenotype. Generally, if there is a small switching cost near the singular strategy, then this singular strategy is an evolutionary branching point, in which predator population will change from monomorphism to dimorphism. Second, we find that if the trade-off curve is globally convex, predator population eventually branches into two extreme specialists, each completely specializing on a particular prey species. However, if the trade-off curve is concave-convex-concave, after branching in predator phenotype, the two predator species will evolve to an evolutionarily stable dimorphism at which they can continue to coexist. The analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible under this model. 相似文献
16.
We construct two models of discrete-time replicator dynamics with time delay. In the social-type model, players imitate opponents taking into account average payoffs of games played some units of time ago. In the biological-type model, new players are born from parents who played in the past. We consider two-player games with two strategies and a unique mixed evolutionarily stable strategy. We show that in the first type of dynamics, it is asymptotically stable for small time delays and becomes unstable for big ones when the population oscillates around its stationary state. In the second type of dynamics, however, evolutionarily stable strategy is asymptotically stable for any size of a time delay. 相似文献
17.
18.
Many studies of evolutionarily stable strategies (ESS) for technical reasons make the simplification that reproduction is clonal. A post-hoc justification is that in the simplest eco-evolutionary models more realistic genetic assumptions, such as haploid sexual or diploid sexual cases, yield results compatible with the clonal ones. For metapopulations the technical reasons were even more poignant thanks to the lack of accessible fitness proxies for the diploid case. However, metapopulations are also precisely the sort of ecological backdrop for which one expect discrepancies between the evolutionary outcomes derived from clonal reproduction and diploid genetics, because substantially many mutant homozygotes appear locally even though the mutant is rare globally. In this paper we devise a fitness proxy applicable to the haploid sexual and diploid sexual case, in the style of Metz and Gyllenberg [Metz, J.A.J., Gyllenberg, M., 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B 268, 499-508], that can cope with local population fluctuations due to environmental and demographic stochasticity. With the use of this fitness proxy we find that in dispersal evolution the studied clonal model is equivalent with the haploid sexual model, and that there are indeed many differences between clonal and diploid ESS dispersal rates. In a homogenous landscape the discrepancy is but minor (less than 2%), but the situation is different in a heterogeneous landscape: Not only is the quantitative discrepancy between the two types of ESSs appreciable (around 10%-20%), but more importantly, at the same parameter values, evolutionarily stability properties may differ. It is possible, that the singular strategy is evolutionarily stable in the clonal case but not in the diploid case, and vice versa. 相似文献
19.
This article is concerned with relating the stability of a population, as defined by the rate of decay of fluctuations induced by demographic stochasticity, with its heterogeneity in age-specific birth and death rates. We invoke the theory of large deviations to establish a fluctuation theorem: The demographic stability of a population is positively correlated with evolutionary entropy, a measure of the variability in the age of reproducing individuals in the population. This theorem is exploited to predict certain correlations between ecological constraints and evolutionary trends in demographic stability, namely, (i) bounded growth constraints--a uni-directional increase in stability, (ii) unbounded growth constraints (large population size)--a uni-directional decrease in stability, (iii) unbounded growth constraints (small population size)--random, non-directional change in stability. These principles relating ecological constraints with trends in demographic stability are shown to be far reaching generalizations of the tenets derived from classical studies of stability in an evolutionary context. These results thus provide a new conceptual framework for explaining patterns of variation in population numbers observed in natural populations. 相似文献
20.
Miekisz J 《Journal of theoretical biology》2005,232(1):47-53
We discuss stochastic dynamics of populations of individuals playing games. Our models possess two evolutionarily stable strategies: an efficient one, where a population is in a state with the maximal payoff (fitness) and a risk-dominant one, where players are averse to risks. We assume that individuals play with randomly chosen opponents (they do not play against average strategies as in the standard replicator dynamics). We show that the long-run behavior of a population depends on its size and the mutation level. 相似文献