首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-Linked β-N-acetylglucosamine (O-GlcNAc) modification found on the serine and threonine residues of intracellular proteins is an inducible post-translational modification that regulates numerous biological processes. In combination with other cell biological and biochemical approaches, a robust and streamlined strategy for detecting the number and stoichiometry of O-GlcNAc modification can provide valuable insights for decoding the functions of O-GlcNAc at the molecular level. Here, we report an optimized workflow for evaluating the O-GlcNAc status of proteins using a combination of metabolic labeling and click chemistry-based mass tagging. This method is strategically complementary to the chemoenzymatic-based mass-tagging method.  相似文献   

2.
The Michaelis-Menten equation has played a central role in our understanding of biochemical processes. It has long been understood how this equation approximates the dynamics of irreversible enzymatic reactions. However, a similar approximation in the case of networks, where the product of one reaction can act as an enzyme in another, has not been fully developed. Here we rigorously derive such an approximation in a class of coupled enzymatic networks where the individual interactions are of Michaelis-Menten type. We show that the sufficient conditions for the validity of the total quasi-steady state assumption (tQSSA), obtained in a single protein case by Borghans, de Boer and Segel can be extended to sufficient conditions for the validity of the tQSSA in a large class of enzymatic networks. Secondly, we derive reduced equations that approximate the network's dynamics and involve only protein concentrations. This significantly reduces the number of equations necessary to model such systems. We prove the validity of this approximation using geometric singular perturbation theory and results about matrix differentiation. The ideas used in deriving the approximating equations are quite general, and can be used to systematize other model reductions.  相似文献   

3.
4.
This paper analyzes the biochemical equilibria between bivalent receptors, homo-bifunctional ligands, monovalent inhibitors, and their complexes. Such reaction schemes arise in the immune response, where immunoglobulins (bivalent receptors) bind to pathogens or allergens. The equilibria may be described by an infinite system of algebraic equations, which accounts for complexes of arbitrary size n (n being the number of receptors present in the complex). The system can be reduced to just 3 algebraic equations for the concentrations of free (unbound) receptor, free ligand and free inhibitor. Concentrations of all other complexes can be written explicitly in terms of these variables. We analyze how concentrations of key (experimentally-measurable) quantities vary with system parameters. Such measured quantities can furnish important information about dissociation constants in the system, which are difficult to obtain by other means. We provide analytical expressions and suggest specific experiments that could be used to determine the dissociation constants.  相似文献   

5.
6.
Diarrheal disease caused by Giardia duodenalis is highly prevalent, causing over 200 million cases globally each year. The processes that drive parasite virulence, host immune evasion and transmission involve coordinated gene expression and have been linked to epigenetic regulation. Epigenetic regulatory systems are eukaryote-conserved, including in deep branching excavates such as Giardia, with several studies already implicating histone post-translational modifications in regulation of its pathogenesis and life cycle. However, further insights into Giardia chromatin dynamics have been hindered by a lack of site-specific knowledge of histone modifications. Using mass spectrometry, we have provided the first known molecular map of histone methylation, acetylation and phosphorylation modifications in Giardia core histones. We have identified over 50 previously unreported histone modifications including sites with established roles in epigenetic regulation, and co-occurring modifications indicative of post-translational modification crosstalk. These demonstrate conserved histone modifications in Giardia which are equivalent to many other eukaryotes, and suggest that similar epigenetic mechanisms are in place in this parasite. Further, we used sequence, domain and structural homology to annotate putative histone enzyme networks in Giardia, highlighting representative chromatin modifiers which appear sufficient for identified sites, particularly those from H3 and H4 variants. This study is to our knowledge the first and most comprehensive, complete and accurate view of Giardia histone post-translational modifications to date, and a substantial step towards understanding their associations in parasite development and virulence.  相似文献   

7.
InhA, the primary target for the first line anti-tuberculosis drug isoniazid, is a key enzyme of the fatty-acid synthase II system involved in mycolic acid biosynthesis in Mycobacterium tuberculosis. In this study, we show that InhA is a substrate for mycobacterial serine/threonine protein kinases. Using a novel approach to validate phosphorylation of a substrate by multiple kinases in a surrogate host (Escherichia coli), we have demonstrated efficient phosphorylation of InhA by PknA, PknB, and PknH, and to a lower extent by PknF. Additionally, the sites targeted by PknA/PknB have been identified and shown to be predominantly located at the C terminus of InhA. Results demonstrate in vivo phosphorylation of InhA in mycobacteria and validate Thr-266 as one of the key sites of phosphorylation. Significantly, our studies reveal that the phosphorylation of InhA by kinases modulates its biochemical activity, with phosphorylation resulting in decreased enzymatic activity. Co-expression of kinase and InhA alters the growth dynamics of Mycobacterium smegmatis, suggesting that InhA phosphorylation in vivo is an important event in regulating its activity. An InhA-T266E mutant, which mimics constitutive phosphorylation, is unable to rescue an M. smegmatis conditional inhA gene replacement mutant, emphasizing the critical role of Thr-266 in mediating post-translational regulation of InhA activity. The involvement of various serine/threonine kinases in modulating the activity of a number of enzymes of the mycolic acid synthesis pathway, including InhA, accentuates the intricacies of mycobacterial signaling networks in parallel with the changing environment.  相似文献   

8.
ABSTRACT: BACKGROUND: Mathematical/computational models are needed to understand cell signaling networks, which are complex. Signaling proteins contain multiple functional components and multiple sites of post-translational modification. The multiplicity of components and sites of modification ensures that interactions among signaling proteins have the potential to generate myriad protein complexes and post-translational modification states. As a result, the number of chemical species that can be populated in a cell signaling network, and hence the number of equations in an ordinary differential equation model required to capture the dynamics of these species, is prohibitively large. To overcome this problem, the rule-based modeling approach has been developed for representing interactions within signaling networks efficiently and compactly through coarse-graining of the chemical kinetics of molecular interactions. RESULTS: Here, we provide a demonstration that the rule-based modeling approach can be used to specify and simulate a large model for ERBB receptor signaling that accounts for site-specific details of protein-protein interactions. The model is considered large because it corresponds to a reaction network containing more reactions than can be practically enumerated. The model encompasses activation of ERK and Akt, and it can be simulated using a network-free simulator, such as NFsim, to generate time courses of phosphorylation for 55 individual serine, threonine, and tyrosine residues. The model is annotated and visualized in the form of an extended contact map. CONCLUSIONS: With the development of software that implements novel computational methods for calculating the dynamics of large-scale rule-based representations of cellular signaling networks, it is now possible to build and analyze models that include a significant fraction of the protein interactions that comprise a signaling network, with incorporation of the site-specific details of the interactions. Modeling at this level of detail is important for understanding cellular signaling.  相似文献   

9.
蛋白质翻译后修饰是调节蛋白质生物学功能的关键步骤之一,是蛋白质动态反应和相互作用的一个重要分子基础,同时,它也是细胞信号网络调控的重要靶点.目前,蛋白质翻译后修饰已经成为国际上蛋白质研究的一个极其重要的热点.在原核生物生命活动中,蛋白质的翻译后修饰具有十分重要的作用,如参与细胞信号传导、物质的代谢、蛋白质的降解、致病微生物的致病过程等.综述了经典原核生物蛋白质翻译后修饰的种类、机制和功能,同时介绍了最近发现的原核生物的全局性乙酰化修饰以及结核分枝杆菌中类泛素化修饰.  相似文献   

10.
We define a subclass of chemical reaction networks called post-translational modification systems. Important biological examples of such systems include MAPK cascades and two-component systems which are well-studied experimentally as well as theoretically. The steady states of such a system are solutions to a system of polynomial equations. Even for small systems the task of finding the solutions is daunting. We develop a mathematical framework based on the notion of a cut (a particular subset of species in the system), which provides a linear elimination procedure to reduce the number of variables in the system to a set of core variables. The steady states are parameterized algebraically by the core variables, and graphical conditions for when steady states with positive core variables imply positivity of all variables are given. Further, minimal cuts are the connected components of the species graph and provide conservation laws. A criterion for when a (maximal) set of independent conservation laws can be derived from cuts is given.  相似文献   

11.
A highly hydrophilic, glutamate-rich protein was identified in the aqueous phenol extract from the cytosolic fraction of brine shrimp (Artemia franciscana) diapausing cysts and termed Artemia phenol soluble protein (PSP). Mass spectrometric analysis revealed the presence of many protein peaks around m/z 11,000, separated by 129 atomic mass units; this value corresponds to that of glutamate, which is strongly suggestive of heterogeneous polyglutamylation. Polyglutamylation has long been known as the functionally important post-translational modification of tubulins, which carry poly(l-glutamic acid) chains of heterogeneous length branching off from the main chain at the γ-carboxy groups of a few specific glutamate residues. In Artemia PSP, however, Edman degradation of enzymatic peptides revealed that at least 13, and presumably 16, glutamate residues were modified by the attachment of a single l-glutamate, representing a hitherto undescribed type of post-translational modification: namely, multiple γ-glutamylation or the addition of a large number of glutamate residues along the polypeptide chain. Although biological significance of PSP and its modification is yet to be established, suppression of in vitro thermal aggregation of lactate dehydrogenase by glutamylated PSP was observed.  相似文献   

12.
The sequence of the Saccharomyces cerevisiae RAD52 gene contains five potential translation start sites and protein-blot analysis typically detects multiple Rad52 species with different electrophoretic mobilities. Here we define the gene products encoded by RAD52. We show that the multiple Rad52 protein species are due to promiscuous choice of start codons as well as post-translational modification. Specifically, Rad52 is phosphorylated both in a cell cycle-independent and in a cell cycle-dependent manner. Furthermore, phosphorylation is dependent on the presence of the Rad52 C terminus, but not dependent on its interaction with Rad51. We also show that the Rad52 protein can be translated from the last three start sites and expression from any one of them is sufficient for spontaneous recombination and the repair of gamma-ray-induced double-strand breaks.  相似文献   

13.

Background  

The β-grasp fold (β-GF), prototyped by ubiquitin (UB), has been recruited for a strikingly diverse range of biochemical functions. These functions include providing a scaffold for different enzymatic active sites (e.g. NUDIX phosphohydrolases) and iron-sulfur clusters, RNA-soluble-ligand and co-factor-binding, sulfur transfer, adaptor functions in signaling, assembly of macromolecular complexes and post-translational protein modification. To understand the basis for the functional versatility of this small fold we undertook a comprehensive sequence-structure analysis of the fold and developed a natural classification for its members.  相似文献   

14.
Ligularia virgaurea, a toxic perennial weed, has become a dominant species in the heavily-grazed alpine meadows of the eastern Qinghai?CTibetan Plateau over recent decades. We investigated changes in soil biochemical properties associated with L. virgaurea spreading in grazed alpine meadows at three sites. Soil and root biomass samples were taken at depths of 0?C8?cm, 8?C16?cm and 16?C24?cm from patches where L. virgaurea was dominant and from areas between L. virgaurea patches, with only other native species. Across sites, root biomass, acid-extracted carbohydrate C, organic C and N mineralization, and microbial biomass C and N concentrations in the top 8-cm layer were significantly higher while nitrate N concentration was significantly lower in L. virgaurea patches than in areas between L. virgaurea patches. The increased activities of dehydrogenase, ???Cglucosidase, urease and phosphatase in the top 8-cm layer under L. virgaurea were associated with enhanced soil microbial biomass. Our results indicate a close association between changes in soil biochemical properties in the top 8-cm layer and the spread of L. virgaurea in grazed alpine meadows of the eastern Qinghai?CTibetan Plateau.  相似文献   

15.
Gunawardena J 《PloS one》2012,7(5):e36321
Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level.  相似文献   

16.
A number of details required for the classification of 3 : 3 double reciprocal plots are provided. It is shown that the ν(S) plot for a 3 : 3 function can have at most four inflexions and at most two inflexions adjacent to a turning point. Using this information, a classification of 3 : 3 ν(S) plots into ten main varieties with several subclasses is reported. The problem of defining the probability with which a given mechanism can give rise to specific curve shape features is considered. Applying this technique, the probability with which four simple enzyme mechanisms can give rise to 3 : 3 curve shapes is computed. It is shown that a 3 : 3 saturation function can have no turning points, at most two inflexions and at most one inflexion in double reciprocal space. The probability with which the available 3 : 3 shapes can arise is also computed. It is concluded that, with realistic values for rate constants, chemically reasonable enzyme mechanisms leading to rate equations of degree n : n can generate most of the kinetic profiles available to a rational function of degree n : n with positive coefficients. The probability of obtaining specific curve shapes is not so characteristic of the particular mechanism for 3:3 rate equations as it is for 2:2 rate equations. The probability of obtaining highly complex curves with several turning points or inflexions is rather lower for the enzyme mechanisms than with general 3 : 3 rational functions. There is a high probability that 3 : 3 mechanisms will generate kinetic curves that are geometrically similar to those possible for degree 2 : 2 but this is not so for binding isotherms. Hence differentiating 3 : 3 from 2 : 2 rate equations from experimental kinetic data is more likely to be successful by non-linear regression to the whole data set than by demonstrating a specific 3 : 3 feature. Binding curves, on the other hand, for three or more sites should give Scatchard plots with inflexions, features not possible with second degree equations which are conic sections in this space.  相似文献   

17.
18.
19.
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network’s capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.  相似文献   

20.
In susceptible tumor cells, DNA-damaging antineoplastic agents induce an increase in intracellular pH during the premitochondrial stage of apoptosis. The rate of nonenzymatic deamidation of two asparagines in the anti-apoptotic protein Bcl-xL is accelerated by this increase in pH. Deamidation of these asparagines is a signal for the degradation of Bcl-xL, which is a component of the apoptotic response to DNA damage. It has previously been shown that the increase in pH is mediated by the ion transporter Na+/H+ exchanger 1 in some cells. Here we demonstrate that one or more additional ion transporters also have a role in the regulation of Bcl-xL deamidation in at least some tumor cell lines and fibroblasts. As a second, independent finding, we report that there are histidines in close proximity to the Bcl-xL deamidation sites that are highly conserved in land-dwelling species and we present evidence that deamidation of human Bcl-xL is intramolecularly catalyzed in a manner that is dependent upon these histidines. Further, we present evidence that these histidines act as a pH-sensitive switch that enhances the effect of the increase in pH on the rate of Bcl-xL deamidation. The conservation of such histidines implies that human Bcl-xL is in essence “designed” to be deamidated, which provides further evidence that deamidation serves as a bona fide regulatory post-translational modification of Bcl-xL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号