首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Energy equivalence assumes equal contribution of large and small species to production and energy flow in communities. As in a double logarithmic plot, physiological rates decline with body weight by –0.25, log biomass should increase by 0.25 and log abundance decline by –0.75 with log species weight, when this concept is valid. This was tested with annual data sets of the macrobenthos of 4 intertidal sites in the German Wadden Sea (Königshafen) and 3 sites in a south Portuguese lagoon (Ria Formosa). Only abundance data from two of these sites displayed significantly negative slopes with mean body size of the species. Biomass and secondary production data were significantly positively correlated with mean body size for all Ria Formosa sites and also for the biomass of a mussel bed in Königshafen. However, high variation in body size of the individuals of a species limits interpretation of these plots.It is preferable to test this concept by body weight classes regardless of its species composition. At Königshafen, biomass and production displayed two distinct peaks. One peak at small body size was caused by browsing species. The other peak at larger body size was caused by animals which potentially extract their food from the water column. This bimodality was only vaguely reflected at one station in the Ria Formosa, possibly because of a dominance of detritus feeding species. In a normalized form (log biomass or production / width of size classvs. log size class), these spectra imply a dominance of small individuals in biomass and production at all sites (except for a mussel bank at Königshafen). This is interpreted as a consequence of permanent disturbances.  相似文献   

2.
In this study, thermochemical biomass gasification was performed on a bench-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Distillers grains, a non-fermentable byproduct of ethanol production, were used as the biomass feedstock for the gasification. The goal was to investigate the effects of furnace temperature, steam to biomass ratio and equivalence ratio on gas composition, carbon conversion efficiency and energy conversion efficiency of the product gas. The experiments were conducted using a 3 × 3 × 3 full factorial design with temperatures of 650, 750 and 850 °C, steam to biomass ratios of 0, 7.30 and 14.29 and equivalence ratios of 0.07, 0.15 and 0.29. Gasification temperature was found to be the most influential factor. Increasing the temperature resulted in increases in hydrogen and methane contents, carbon conversion and energy efficiencies. Increasing equivalence ratio decreased the hydrogen content but increased carbon conversion and energy efficiencies. The steam to biomass ratio was optimal in the intermediate levels for maximal carbon conversion and energy efficiencies.  相似文献   

3.
Lipase-catalysed synthesis of alkyl esters is regarded as a potential alternative to chemical catalysis. Owing to its availability as a waste material from the babaco fruit production, its strong lipolytic activity and its natural immobilization, the dried latex of Vasconcellea × heilbornii appears as a good candidate to produce alkyl esters. The ability and performance of this lipase to catalyse the alcoholysis of sunflower oil with various primary alcohols was evaluated in a solvent-free system. A linear correlation between the final reaction rate and the alcohol polarity was established. For methanolysis, the influence of substrates ratio on final conversion rate was studied at different temperatures. At 30 °C, the lipase was inactivated by shaking in a mixture containing more than 0.5 molar equivalents of methanol; the minimum methanol concentration for enzyme deactivation increased with temperature. Moreover, for a 0.5:1 methanol/TAG molar ratio, conversion rates of 73, 66 and 55% were obtained at 30, 40 and 55 °C respectively, showing that the increase of temperature diminished the final methanolysis conversion rate. These facts were associated to the miscibility of methanol in oil and to the thermodynamic state of the medium. To overcome the inactivation of the lipase by methanol, alcoholysis was carried out by fractionated addition of methanol. In those conditions, Vasconcellea × heilbornii latex could catalyse the conversion of 70% of sunflower TAGs in methyl esters at 30 °C.  相似文献   

4.

Background

Visceral leishmaniasis is the most clinically relevant and dangerous form of human leishmaniasis. Most traditional drugs for treatment of leishmaniasis are toxic, possess many adverse reactions and drug resistance is emerging. Therefore, there is urgent need for identification of new therapeutic targets. Recently, we found that mice with an inactivating knock-in mutation in the p110δ isoform of pi3k, (p110δd910a) are hyper resistant to L. major, develop minimal cutaneous lesion and rapidly clear their parasite. Here, we investigated whether pi3k signaling also regulates resistance to L. donovani, one of the causative agents of visceral leishmaniasis.

Methodology/Principal Findings

WT and p110δD910A mice (on a BALB/c background) were infected with L. donovani. At different time points, parasite burden and granuloma formation were assessed. T and B cell responses in the liver and spleen were determined. In addition, Tregs were expanded in vivo and its impact on resistance was assessed. We found that p110δD910A mice had significantly reduced splenomegaly and hepatomegaly and these organs harbored significantly fewer parasites than those of WT mice. Interestingly, infected p110δD910A mice liver contains fewer and less organized granulomas than their infected WT counterparts. Cells from p110δD910A mice were significantly impaired in their ability to produce cytokines compared to WT mice. The percentage and absolute numbers of Tregs in infected p110δD910A mice were lower than those in WT mice throughout the course of infection. In vivo expansion of Tregs in infected p110δD910A mice abolished their enhanced resistance to L. donovani infection.

Conclusions/Significance

Our results indicate that the enhanced resistance of p110δD910A mice to L. donovani infection is due to impaired activities of Tregs. They further show that resistance to Leishmania in the absence of p110δ signaling is independent of parasite species, suggesting that targeting the PI3K signaling pathway may be useful for treatment of both visceral and cutaneous leishmaniasis.  相似文献   

5.
6.
7.
Vanillin is undoubtedly one of the most popular and widely used flavoring agents in the world. Taking into consideration the worldwide demand for natural vanillin and its limited supply, alternative routes for its production including biotransformation are being constantly explored. In this regard, a novel soil bacterium capable of converting isoeugenol to vanillin was isolated by conventional enrichment process from soils of Ocimum field. On the basis of morphological and physiochemical characteristics and 16S rRNA gene sequence analysis, the isolate was identified as Pseudomonas chlororaphis CDAE5 (EMBL # AM158279). Vanillin formation was analyzed by gas chromatography (GC), and its structure was confirmed by GC-mass spectrometry and nuclear magnetic resonance. After 24-h reaction, the vanillin concentration reached 1.2 g L−1 from 10 g L−1 isoeugenol in 20-mL reaction solution at 25°C and 180 rpm. The strain showed potential to be a good candidate for biotechnological production of vanillin from isoeugenol. Further studies for standardization and optimization for higher yield of vanillin production needs to be investigated. IHBT Communication No. 0676  相似文献   

8.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

9.
10.
Aminophosphine oxides and aminophosphonates are, in general, very stable compounds. However, following phosphorus–carbon bond cleavage in aqueous acidic media these compounds sometimes decompose to phosphonic acids derivatives (PIII). Despite some controversy in the literature, careful analysis supported by theoretical studies leads to the conclusion that decomposition to PIII derivatives proceeds via an elimination reaction. Figure The decomposition of α-aminophosphine oxides to phosphonic acid derivatives (PIII)  相似文献   

11.
Using comet assay, a statistically significant increase (p < 0.05) in the level of DNA breaks in spleen cells was revealed in male CBA/lac mice exposed to γ-radiation (1.7 mGy/day) or 90Sr (150–250 Bq/day) for 210 days. The level of DNA breaks also increased under combined exposure to both γ-radiation and 90Sr (p < 0.05), but to a lesser degree than under exposure to each of these factors alone. Upon additional in vitro treatment of spleen cells with hydrogen peroxide, the relative increase in the level of DNA breaks was smaller in cells of irradiated mice than in the control. The ratio of the level of DNA breaks after hydrogen peroxide treatment to that before this treatment in control mice was 4.2 ± 0.9, compared to 1.4 ± 0.6 in γ-irradiated mice, 1.9 ± 0.8 in 90Sr-irradiated mice, and 2.3 ± 0.8 in mice exposed to both γ- and 90Sr-irradiation.  相似文献   

12.
According to the results of analysis of whole genome sequencing, the presence of genes having resistance to β-lactam antibiotics in hospital-associated strains of Klebsiella pneumoniae was studied. The strains were isolated from neonatal intensive care units. The data obtained were compared with the results of antimicrobial susceptibility testing of isolated microorganisms. Among other strains resistant to cephalosporins, the dominance of genes of CTX-M-type extended-spectrum β-lactamases was shown. It was revealed that one of eight strains phenotypically resistant and moderately resistant to carbapenems have the blaOXA-48 carbapenemase gene.  相似文献   

13.
The effects of low and moderate salinity (100 and 200 mM NaCl, respectively) and iso-osmotic stress generated by polyethylene glycol PEG (1) (–0.3 MPa) and PEG (2) (–0.6 MPa) on maximum quantum yield of photosystem II (PSII), growth, photosynthesis, transpiration, dark respiration, water use efficiency (WUE), water content, chlorophyll, proline, Na+ and K+ concentrations were investigated in shoots of two ecotypes С3–С4 xero-halophyte Bassia sedoides (Pall.) Aschers. Plants were grown from seeds of two Southern Urals populations (Makan and Podolsk) differing in their bioproductivity. Aboveground biomass of the Makan plants was approximately 10-fold higher than that of the Podolsk ecotype. The plants of both ecotypes were sensitive to water deficit. They showed similar decrease in biomass, water content, net photosynthesis and transpiration intensity under both low and moderate osmotic stress (PEG). However, the content of сhlorophyll and free proline in shoots of the Podolsk plants increased under moderate osmotic stress (PEG(2)). Under salinity the differences between transpiration, Fv/Fm, WUE, water content, chlorophyll and proline concentrations in shoots of two ecotypes were no found. But, the Podolsk plants showed decrease in the growth parameters (1.5-fold), increase in the dark respiration intensity (2-fold) and the Na+/K+ ratio (1.2-fold) under moderate salinity (200 mM NaCl). Thus, the reduction of bioproductivity of the Podolsk ecotype under salinity was the result of ionic rather than osmotic factor of salinity. In the Podolsk plants the additional transpiration costs and consumption of assimilates (correspondingly) increased with the toxic sodium ion accumulation under salinity. This led to decrease in the growth parameters. Thus, two B. sedoides ecotypes have different adaptive strategies of tolerance to the ionic factor of salt stress at the level of the physiological processes associated with the dark CO2 gas exchange. Moreover, in less tolerant and productive Podolsk ecotype the increase in proline content in shoots characterized comparatively low adaptation to osmotic factor, and the increase in dark respiration and the Na+/K+ ratio pointed to relatively low resistance to ion factor of salinity as compared with the Makan ecotype.  相似文献   

14.
This study investigated the relationship between 13C of ecosystem components, soluble plant carbohydrates and the isotopic signature of ecosystem respired CO2 (13CR) during seasonal changes in soil and atmospheric moisture in a beech (Fagus sylvatica L.) forest in the central Apennine mountains, Italy. Decrease in soil moisture and increase in air vapour pressure deficit during summer correlated with substantial increase in 13C of leaf and phloem sap soluble sugars. Increases in 13C of ecosystem respired CO2 were linearly related to increases in phloem sugar 13C (r2=0.99, P0.001) and leaf sugar 13C (r2=0.981, P0.01), indicating that a major proportion of ecosystem respired CO2 was derived from recent assimilates. The slopes of the best-fit lines differed significantly (P0.05), however, and were about 0.86 (SE=0.04) for phloem sugars and about 1.63 (SE=0.16) for leaf sugars. Hence, changes in isotopic signature in phloem sugars were transferred to ecosystem respiration in the beech forest, while leaf sugars, with relatively small seasonal changes in 13C, must have a slower turnover rate or a significant storage component. No significant variation in 13C was observed in bulk dry matter of various plant and ecosystem components (including leaves, bark, wood, litter and soil organics). The apparent coupling between the 13C of soluble sugars and ecosystem respiration was associated with large apparent isotopic disequilibria. Values of 13CR were consistently more depleted by about 4 relative to phloem sugars, and by about 2 compared to leaf sugars. Since no combination of the measured pools could produce the observed 13CR signal over the entire season, a significant isotopic discrimination against 13C might be associated with short-term ecosystem respiration. However, these differences might also be explained by substantial contributions of other not measured carbon pools (e.g., lipids) to ecosystem respiration or contributions linked to differences in footprint area between Keeling plots and carbohydrate sampling. Linking the seasonal and inter-annual variations in carbon isotope composition of carbohydrates and respiratory CO2 should be applicable in carbon cycle models and help the understanding of inter-annual variation in biospheric sink strength.  相似文献   

15.
The inversion of configuration of L‐alanine can be carried out by combining its selective oxidation in the presence of NAD+ and L‐alanine dehydrogenase, electrochemical regeneration of the NAD+ at a carbon felt anode, and reductive amination of pyruvate, i.e., reduction of its imino derivative at a mercury cathode, the reaction mixture being buffered with concentrated ammonium/ammonia (1.28M / 1.28M). The dehydrogenase exhibits astonishing activity and stability under such extreme conditions of pH and ionic strength. The main drawback of the process is its slowness. At best, the complete inversion of a 10 mM solution of L‐alanine requires 140 h. A careful and detailed quantitative analysis of each of the key steps involved shows that the enzyme catalyzed oxidation is so thermodynamically uphill that it can be driven efficiently to completion only when both the coenzyme regeneration and the pyruvate reduction are very effective. The first condition is easily fulfilled. Under the best conditions, it is the rate of the chemical reaction producing the imine which controls the whole process kinetically. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 101–107, 1999.  相似文献   

16.
Identifying the plant traits and patterns of trait distribution in communities that are responsible for biotic regulation of CO2 uptake–climate responses remains a priority for modeling terrestrial C dynamics. We used remotely sensed estimates of gross primary productivity (GPP) from plots planted to different combinations of perennial grassland species in order to determine links between traits and GPP–climate relationships. Climatic variables explained about 50% of the variance in temporal trends in GPP despite large variation in CO2 uptake among seasons, years, and plots of differing composition. GPP was highly correlated with contemporary changes in net radiation (Rn) and precipitation deficit (potential evapotranspiration minus precipitation) but was negatively correlated with precipitation summed over 210 days prior to flux measurements. Plots differed in GPP–Rn and GPP–water (deficit, precipitation) relationships. Accounting for differences in GPP–climate relationships explained an additional 11% of variance in GPP. Plot differences in GPP–Rn and GPP–precipitation slopes were linked to differences in community-level light-use efficiency (GEE*). Plot differences in GPP–deficit slopes were linked to differences in a species abundance-weighted index of specific leaf area (SLA). GEE* and weighted SLA represent vegetation properties that may regulate how CO2 uptake responds to climatic variation in grasslands.  相似文献   

17.
Ehlers BK  Thompson J 《Oecologia》2004,141(3):511-518
Local modification of the soil environment by individual plants may affect the performance and composition of associated plant species. The aromatic plant Thymus vulgaris has the potential to modify the soil through leaching of water-soluble compounds from leaves and litter decomposition. In southern France, six different thyme chemotypes can be distinguished based on the dominant monoterpene in the essential oil, which is either phenolic or non-phenolic in structure. We examine how soils from within and away from thyme patches in sites dominated by either phenolic or non-phenolic chemotypes affect germination, growth and reproduction of the associated grass species Bromus erectus. To do so, we collected seeds of B. erectus from three phenolic and three non-phenolic sites. Seeds and seedlings were grown on soils from these sites in a reciprocal transplant type experiment in the glasshouse. Brome of non-phenolic origin performed significantly better on its home soil than on soil from a different non-phenolic or a phenolic site. This response to local chemotypes was only observed on soil collected directly underneath thyme plants and not on soil in the same site (<5 m away) but where no thyme plants were present. This is preliminary evidence that brome plants show an adaptive response to soil modifications mediated by the local thyme chemotypes. Reproductive effort was consistently higher in brome of phenolic origin than in brome of non-phenolic origin (on both thyme- and grass-soil), indicating that life-history variation may be related to environmental factors which also contribute to the spatial differentiation of thyme chemotypes. Moreover, we found that brome growing on thyme-soil in general was heavier than when growing on grass-soil, regardless of the origin of the brome plants. This is concordant with thyme-soil containing higher amounts of organic matter and nitrogen than grass-soil. Our results indicate that patterns of genetic differentiation and local adaptation may modify competitive interactions and possible facilitation effects in natural communities.  相似文献   

18.
The pathogenesis of Alzheimer's disease (AD) is correlated with the misfolding and aggregation of amyloid-beta protein (Aβ). Here we report that the antibiotic benzylpenicillin (BP) can specifically bind to Aβ, modulate the process of aggregation and supress its cytotoxic effect, initially via a reversible binding interaction, followed by covalent bonding between specific functional groups (nucleophiles) within the Aβ peptide and the beta-lactam ring. Mass spectrometry and computational docking supported covalent modification of Aβ by BP. BP was found to inhibit aggregation of Aβ as revealed by the Thioflavin T (ThT) fluorescence assay and atomic force microscopy (AFM). In addition, BP treatment was found to have a cytoprotective activity against Aβ-induced cell cytotoxicity as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell toxicity assay. The specific interaction of BP with Aβ suggests the possibility of structure-based drug design, leading to the identification of new drug candidates against AD. Moreover, good pharmacokinetics of beta-lactam antibiotics and safety on long-time use make them valuable candidates for drug repurposing towards neurological disorders such as AD.  相似文献   

19.
Alzheimer’s disease (AD) is a well-known neurodegenerative disease. Deposition of β-amyloid protein (Aβ) oligomers plays a crucial role in the disease progression. Previous studies showed that toxicity induced by Aβ oligomers in cultured neurons and adult rat brain was partially mediated by activation of glutamatergic N-methyl-d-aspartate receptors (NMDAR). Additionally, memantine, a noncompetitive NMDAR antagonist, can significantly improve cognitive functions in some AD patients. However, little is currently known about the potential role of NMDAR antagonist on the regulation of P-MARCKS protein to Aβ1?42 oligomers induced neurotoxicity. The protective effect and mechanism of NMDAR antagonist on primary neurons exposed to Aβ1?42 oligomers were investigated in the study. We have defined that the Aβ1?42 treatment decreased cell viability and increased apoptosis. Moreover, Aβ1?42 oligomers exposure increased P-MARCKS and PIP2 expressions, while decreased SYP expression. However, NMDAR antagonist pretreatment ameliorates Aβ1?42 oligomers induced neuronal apoptosis and partially reverses the expression of P-MARCKS, PIP2 and SYP. In conclusion, NMDAR antagonist may ameliorate neurotoxicity induced by Aβ1?42 oligomers through reducing neuronal apoptosis and protecting synaptic plasticity in rat primary neurons. The mechanism involved may be mediated by the variation of protein P-MARCKS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号