首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

The control of Salmonella in pig production is necessary for public and animal health, and vaccination was evaluated as a strategy to decrease pig prevalence.

Methods and Results

The study examined the efficacy of a live Salmonella Typhimurium vaccine, administered to sows on eight commercial farrow‐to‐finish herds experiencing clinical salmonellosis or Salmonella carriage associated with S. Typhimurium or its monophasic variants. Results of longitudinal Salmonella sampling were compared against eight similarly selected and studied control farms. At the last visit (~14 months after the start of vaccination), when all finishing stock had been born to vaccinated sows, both faecal shedding and environmental prevalence of Salmonella substantially declined on the majority of vaccinated farms in comparison to the controls. A higher proportion of vaccine farms resolved clinical salmonellosis than controls. However, Salmonella counts in positive faeces samples were similar between nonvaccinated and vaccinated herds.

Conclusions

The results suggest that maternal vaccination is a suitable option for a Salmonella Typhimurium reduction strategy in farrow‐to‐finish pig herds.

Significance and Impact of the Study

Salmonella vaccines have the potential to reduce the prevalence of Salmonella in pigs and result in a reduction of human cases attributed to pork.  相似文献   

2.
A survey of management practices in 309 Irish dairy herds was used to identify risk factors for the presence of antibodies to Salmonella, Neospora caninum and Leptospira interrogans serovar hardjo in extensively managed unvaccinated dairy herds. A previous study documented a herd-level seroprevalence in bulk milk of 49%, 19% and 86% for Salmonella, Neospora caninum and leptospira interrogans serovar hardjo, respectively in the unvaccinated proportion of these 309 herds in 2009. Association analyses in the present study were carried out using multiple logistic regression models. Herds where cattle were purchased or introduced had a greater likelihood of being positive to leptospira interrogans serovar hardjo (P<0.01) and Salmonella (P<0.01). Larger herds had a greater likelihood of recording a positive bulk milk antibody result to leptospira interrogans serovar hardjo (P<0.05). Herds that practiced year round calving were more likely to be positive to Neospora caninum (P<0.05) compared to herds with a spring-calving season, with no difference in risk between herds that practiced split calving compared to herds that practiced spring calving. No association was found between presence of dogs on farms and prevalence of Neospora caninum possibly due to limited access of dogs to infected materials including afterbirths. The information from this study will assist in the design of suitable control programmes for the diseases under investigation in pasture-based livestock systems.  相似文献   

3.
Salmonella spp are a major foodborne zoonotic cause of human illness. Consumption of pork products is believed to be a major source of human salmonellosis and Salmonella control throughout the food-chain is recommended. A number of on-farm interventions have been proposed, and some have been implemented in order to try to achieve Salmonella control. In this study we utilize previously developed models describing Salmonella dynamics to investigate the potential effects of a range of these on-farm interventions. As the models indicated that the number of bacteria shed in the faeces of an infectious animal was a key factor, interventions applied within a high-shedding scenario were also analysed. From simulation of the model, the probability of infection after Salmonella exposure was found to be a key driver of Salmonella transmission. The model also highlighted that minimising physiological stress can have a large effect but only when shedding levels are not excessive. When shedding was high, weekly cleaning and disinfection was not effective in Salmonella control. However it is possible that cleaning may have an effect if conducted more often. Furthermore, separating infectious animals, shedding bacteria at a high rate, from the rest of the population was found to be able to minimise the spread of Salmonella.  相似文献   

4.
Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.  相似文献   

5.
An aim of some vaccination programmes is to reduce the prevalence of an infectious disease and ultimately to eradicate it. We show that eradication success depends on the type of vaccine as well as on the vaccination coverage. Vaccines that reduce the parasite within-host growth rate select for higher parasite virulence and this evolution may both increase the prevalence of the disease and prevent disease eradication. By contrast, vaccines that reduce the probability of infection select against virulence and may lead more easily to eradication. In some cases, epidemiological feedback on parasite evolution yields an evolutionary bistable situation where, for intermediate vaccination coverage, parasites can evolve towards either high or low virulence, depending on the initial conditions. These results have practical implications for the design and use of imperfect vaccines in public- and animal-health programmes.  相似文献   

6.
Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA) and neuraminidase (NA) of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.  相似文献   

7.
Novel vaccines are needed to control tuberculosis (TB), the bacterial infectious disease that together with malaria and HIV is worldwide responsible for high levels of morbidity and mortality. TB can result from the reactivation of an initially controlled latent infection by Mycobacterium tuberculosis (Mtb). Mtb proteins for which a possible role in this reactivation process has been hypothesized are the five homologs of the resuscitation-promoting factor of Micrococcus luteus, namely Mtb Rv0867c (rpfA), Rv1009 (rpfB), Rv1884c (rpfC), Rv2389c (rpfD) and Rv2450c (rpfE). Analysis of the immune recognition of these 5 proteins following Mtb infection or Mycobacterium bovis BCG vaccination of mice showed that Rv1009 (rpfB) and Rv2389c (rpfD) are the most antigenic in the tested models. We therefore selected rpfB and rpfD for testing their vaccine potential as plasmid DNA vaccines. Elevated cellular immune responses and modest but significant protection against intra-tracheal Mtb challenge were induced by immunization with the rpfB encoding DNA vaccine. The results indicate that rpfB is the most promising candidate of the five rpf-like proteins of Mtb in terms of its immunogenicity and protective efficacy and warrants further analysis for inclusion as an antigen in novel TB vaccines.  相似文献   

8.
A mathematical model is developed to assess the role of gametocytes (the infectious sexual stage of the malaria parasite) in malaria transmission dynamics in a community. The model is rigorously analysed to gain insights into its dynamical features. It is shown that, in the absence of disease-induced mortality, the model has a globally-asymptotically stable disease-free equilibrium whenever a certain epidemiological threshold, known as the basic reproduction number (denoted by ℛ0), is less than unity. Further, it has a unique endemic equilibrium if ℛ0>1. The model is extended to incorporate an imperfect vaccine with some assumed therapeutic characteristics. Theoretical analyses of the model with vaccination show that an imperfect malaria vaccine could have negative or positive impact (in reducing disease burden) depending on whether or not a certain threshold (denoted by ) is less than unity. Numerical simulations of the vaccination model show that such an imperfect anti-malaria vaccine (with a modest efficacy and coverage rate) can lead to effective disease control if the reproduction threshold (denoted by ℛvac) of the disease is reasonably small. On the other hand, the disease cannot be effectively controlled using such a vaccine if ℛvac is high. Finally, it is shown that the average number of days spent in the class of infectious individuals with higher level of gametocyte is critically important to the malaria burden in the community.  相似文献   

9.
We report sequencing of the O antigen encoded by the rfb gene cluster of Salmonella enterica serotype Jangwani (O17) and Salmonella serotype Cerro (O18). We developed serogroup O17- and O18-specific PCR assays based on rfb gene targets and found them to be sensitive and specific for rapid identification of Salmonella serogroups O17 and O18.  相似文献   

10.
Infection elimination may be an important goal of control programs. Only in stochastic infection models can true infection elimination be observed as a fadeout. The phenomena of fadeout and variable prevalence are important in understanding the transmission dynamics of infectious diseases and these phenomena are essential to evaluate the effectiveness of control measures. To investigate the stochastic dynamics of Mycobacterium avium subsp. paratuberculosis (MAP) infection on US dairy herds with test-based culling intervention, we developed a multi-group stochastic compartmental model (a continuous time Markov chain model) with both horizontal and vertical transmission. The stochastic model predicted fadeout and within-herd prevalence to have a large variance. Although test-based culling intervention generally decreased prevalence over time, it took longer than desired by producers to eliminate the endemic MAP infection from a herd. Uncertainty analysis showed that, using annual culture test and culling of only high shedders or culling of both low and high shedders with a 12-month delay in culling of low shedders, MAP infection persisted in many herds beyond 20 years. While using semi-annual culture test and culling of low and high shedders with a 6-month delay in culling of low shedders, MAP infection in many herds would be extinct within 20 years. Sensitivity analysis of the cumulative density function of fadeout suggested that combining test-based culling intervention and reduction of transmission rates through improved management between susceptible calves and shedding animals may be more effective than either alone in eliminating endemic MAP infection. We also discussed the effects of other factors such as herd size, heifer replacement, and adult cow infection on the probability of fadeout.  相似文献   

11.
12.
Salmonella Typhi, first isolated in 1884, results in infection of the intestines and can end in death and disability. Due to serious adverse events post vaccination, whole cell killed vaccines have been replaced with new generation vaccines. The efficacy of Vi polysaccharide (ViPS) vaccine, a new generation, single-dose intramuscular typhoid vaccine was assessed in Nepal in 1987. However, despite the availability of ViPS vaccine for more than 25 years, Nepal has one of the highest incidence of typhoid fever. Therefore we collected information from hospitals in the Kathmandu Valley from over the past five years. There were 9901 enteric fever cases between January 2008 and July 2012. 1,881 of these were confirmed typhoid cases from five hospitals in the Kathmandu district. Approximately 70% of the cases involved children under 15 years old. 1281 cases were confirmed as S. Paratyphi. Vaccines should be prioritized for control of typhoid in conjunction with improved water and sanitation conditions in Nepal and in endemic countries of Asia and Africa.  相似文献   

13.

Background

Within the last decade, Salmonella enterica subsp. enterica serovar Cerro (S. Cerro) has become one of the most common serovars isolated from cattle and dairy farm environments in the northeastern US. The fact that this serovar is commonly isolated from subclinically infected cattle and is rarely associated with human disease, despite its frequent isolation from cattle, has led to the hypothesis that this emerging serovar may be characterized by reduced virulence. We applied comparative and population genomic approaches to (i) characterize the evolution of this recently emerged serovar and to (ii) gain a better understanding of genomic features that could explain some of the unique epidemiological features associated with this serovar.

Results

In addition to generating a de novo draft genome for one Salmonella Cerro strain, we also generated whole genome sequence data for 26 additional S. Cerro isolates, including 16 from cattle operations in New York (NY) state, 2 from human clinical cases from NY in 2008, and 8 from diverse animal sources (7 from Washington state and 1 from Florida). All isolates sequenced in this study represent sequence type ST367. Population genomic analysis showed that isolates from the NY cattle operations form a well-supported clade within S. Cerro ST367 (designated here “NY bovine clade”), distinct from isolates from Washington state, Florida and the human clinical cases. A molecular clock analysis indicates that the most recent common ancestor of the NY bovine clade dates back to 1998, supporting the recent emergence of this clone.Comparative genomic analyses revealed several relevant genomic features of S. Cerro ST367, that may be responsible for reduced virulence of S. Cerro, including an insertion creating a premature stop codon in sopA. In addition, patterns of gene deletion in S. Cerro ST367 further support adaptation of this clone to a unique ecological or host related niche.

Conclusions

Our results indicate that the increase in prevalence of S. Cerro ST367 is caused by a highly clonal subpopulation and that S. Cerro ST367 is characterized by unique genomic deletions that may indicate adaptation to specific ecological niches and possibly reduced virulence in some hosts.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-427) contains supplementary material, which is available to authorized users.  相似文献   

14.
Understanding the impact of vaccination in a host population is essential to control infectious diseases. However, the impact of bait vaccination against wildlife diseases is difficult to evaluate. The vaccination history of host animals is generally not observable in wildlife, and it is difficult to distinguish immunity by vaccination from that caused by disease infection. For these reasons, the impact of bait vaccination against classical swine fever (CSF) in wild boar inhabiting Japan has not been evaluated accurately. In this study, we aimed to estimate the impact of the bait vaccination campaign by modelling the dynamics of CSF and the vaccination process among a Japanese wild boar population. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, we solved the theoretical relationship between the impact of vaccination, the time-series change in the proportion of infected wild boar, and that of immunised wild boar. Using this derived relationship, the increase in antibody prevalence against CSF because of vaccine campaigns in 2019 was estimated to be 12.1 percentage points (95% confidence interval: 7.8–16.5). Referring to previous reports on the basic reproduction number (R0) of CSF in wild boar living outside Japan, the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity was also estimated. An approximate 1.6 (when R0 = 1.5, target vaccination coverage is 33.3% of total population) to 2.9 (when R0 = 2.5, target vaccination coverage is 60.0% of total population) times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019.  相似文献   

15.
Salmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non-typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic diversity between the thousands of serovars capable of causing infection in humans. However, a number of attenuated candidate vaccine strains are currently being developed. As facultative intracellular pathogens with multiple systems for transporting effector proteins to host cells, attenuated Salmonella strains can also serve as ideal tools for the delivery of foreign antigens to create multivalent live carrier vaccines for simultaneous immunization against several unrelated pathogens. Further, the ease with which Salmonella can be genetically modified and the extensive knowledge of the virulence mechanisms of this pathogen means that this bacterium has often served as a model organism to test new approaches. In this review we focus on (1) recent advances in live attenuated Salmonella vaccine development, (2) improvements in expression of foreign antigens in carrier vaccines and (3) adaptation of attenuated strains as sources of purified antigens and vesicles that can be used for subunit and conjugate vaccines or together with attenuated vaccine strains in heterologous prime-boosting immunization strategies. These advances have led to the development of new vaccines against Salmonella which have or will soon be tested in clinical trials.  相似文献   

16.
BackgroundWhile immunization is one of the most effective and successful public health interventions, there are still up to 30,000 deaths in major developed economies each year due to vaccine-preventable diseases, almost all in adults. In the UK, despite comparatively high vaccination rates among ≧65 s (73%) and, to a lesser extent, at-risk ≤65 s (52%) in 2013/2014, over 10,000 excess deaths were reported the previous influenza season. Adult tetanus vaccines are not routinely recommended in the UK, but may be overly administered. Social influences and risk-perceptions of diseases and vaccines are known to affect vaccine uptake. We aimed to explore the socio-psychological factors that drive adult vaccination in the UK, specifically influenza and tetanus, and to evaluate whether these factors are comparable between vaccines.Methods20 in-depth, face-to-face interviews were conducted with members of the UK public who represented a range of socio-demographic characteristics associated with vaccination uptake. We employed qualitative interviewing approaches to reach a comprehensive understanding of the factors influencing adult vaccination decisions. Thematic analysis was used to analyze the data.ResultsParticipants were classified according to their vaccination status as regular, intermittent and non-vaccinators for influenza, and preventative, injury-led, mixed (both preventative and injury-led) and as non-vaccinators for tetanus. We present our finding around five overarching themes: 1) perceived health and health behaviors; 2) knowledge; 3) vaccination influences; 4) disease appraisal; and 5) vaccination appraisal.ConclusionThe uptake of influenza and tetanus vaccines was largely driven by participants'' risk perception of these diseases. The tetanus vaccine is perceived as safe and sufficiently tested, whereas the changing composition of the influenza vaccine is a cause of uncertainty and distrust. To maximize the public health impact of adult vaccines, policy should be better translated into high vaccination rates through evidence-based implementation approaches.  相似文献   

17.
The emergence and spread of mutant pathogens that evade the effects of prophylactic interventions, including vaccines, threatens our ability to control infectious diseases globally. Imperfect vaccines (e.g. those used against influenza), while not providing life-long immunity, confer protection by reducing a range of pathogen life-history characteristics; conversely, mutant pathogens can gain an advantage by restoring the same range of traits in vaccinated hosts. Using an SEIR model motivated by equine influenza, we investigate the evolutionary consequences of alternative types of imperfect vaccination, by comparing the spread rate of three types of mutant pathogens, in response to three types of vaccines. All mutant types spread faster in response to a transmission-blocking vaccine, relative to vaccines that reduce the proportion of exposed vaccinated individuals becoming infectious, and to vaccines that reduce the length of the infectious period; this difference increases with increasing vaccine efficacy. We interpret our results using the first published Price equation formulation for an SEIR model, and find that our main result is explained by the effects of vaccines on the equilibrium host distribution across epidemiological classes. In particular, the proportion of vaccinated infectious individuals among all exposed and infectious hosts, which is relatively higher in the transmission-blocking vaccine scenario, is important in explaining the faster spread of mutant strains in response to that vaccine. Our work illustrates the connection between epidemiological and evolutionary dynamics, and the need to incorporate both in order to explain and interpret findings of complicated infectious disease dynamics.  相似文献   

18.
Most pathogens have developed an intrinsic capacity to thrive by developing resistance to antimicrobial compounds utilized in treatment. Antimicrobial resistance arises when microbial agents such as bacteria, viruses, fungi, and parasites alter their behaviour to make current conventional medicines inefficient. Vaccination is one of the most effective strategies to fight antimicrobial resistance. Vaccines, unlike drugs, are less likely to produce resistance since they are precise to their target illnesses. Vaccines against infectious agents such as Streptococcus pneumoniae and Haemophilus influenzae have already been shown to reduce tolerance to antimicrobial medications; however, vaccines against some antimicrobial-resistant pathogens such as Vibrio cholerae, Salmonella typhi, Escherichia coli, nosocomial infections, and pulmonary and diarrheal disease viruses require more research and development. This paper describes vaccine roles in combatting antimicrobial resistance, quantifies the overall advantages of vaccination as an anti-antimicrobial resistance approach, analyzes existing antimicrobial vaccines and those currently under development, and emphasizes some of the obstacles and prospects of vaccine research and development.  相似文献   

19.
A major goal in rabies virus (RV) research is to develop a single-dose postexposure prophylaxis (PEP) that would simplify vaccination protocols, reduce costs associated with rabies prevention in humans, and save lives. Live replication-deficient RV-based vaccines are emerging as promising single-dose vaccines to replace currently licensed inactivated RV-based vaccines. Nonetheless, little is known about how effective B cells develop in response to live RV-based vaccination. Understanding this fundamental property of rabies immunology may help in developing a single-dose RV vaccine. Typically, vaccines induce B cells secreting high-affinity, class-switched antibodies during germinal center (GC) reactions; however, there is a lag time between vaccination and the generation of GC B cells. In this report, we show that RV-specific antibodies are detected in mice immunized with live but not inactivated RV-based vaccines before B cells displaying a GC B cell phenotype (B220+GL7hiCD95hi) are formed, indicating a potential role for T cell-independent and early extrafollicular T cell-dependent antibody responses in the protection against RV infection. Using two mouse models of CD4+ T cell deficiency, we show that B cells secreting virus-neutralizing antibodies (VNAs) are induced via T cell-independent mechanisms within 4 days postimmunization with a replication-deficient RV-based vaccine. Importantly, mice that are completely devoid of T cells (B6.129P2-Tcrβtm1Mom Tcrδtm1Mom/J) show protection against pathogenic challenge shortly after immunization with a live replication-deficient RV-based vaccine. We show that vaccines that can exploit early pathways of B cell activation and development may hold the key for the development of a single-dose RV vaccine wherein the rapid induction of VNA is critical.  相似文献   

20.
Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain ΔpmrG-HM-D (DV-STM-07) in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号