首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The quantitative intraparticle enzyme distribution of Assemblase, an industrially employed polydisperse immobilized penicillin-G acylase, was measured. Because of strong autofluorescence of the carrier, the generally applied technique of confocal scanning microscopy could not be used; light microscopy was our method of choice. To do so, Assemblase particles of various sizes were sectioned, labeled with antibodies specifically against the enzyme, and analyzed light microscopically. Image analysis software was developed and used to determine the intraparticle enzyme distribution, which was found to be heterogeneous, with most enzyme located in the outer regions of the particles. Larger particles showed steeper gradients than smaller ones. A mathematical representation of the intraparticle profiles, based on in-stationary enzyme diffusion into the particles, was validated successfully for a broad range of particle sizes using data for volume-averaged particle size and enzyme loading. The enzyme gradients determined in this work will be used as input for a physical model that quantitatively describes the complex behavior of Assemblase. Such a physical model will lead to identification of the current bottlenecks in Assemblase and can serve as a starting point for the design of improved biocatalysts that also may be based on intelligent use of enzyme gradients.  相似文献   

3.
A physical model was derived for the synthesis of the antibiotic cephalexin with an industrial immobilized penicillin G acylase, called Assemblase. In reactions catalyzed by Assemblase, less product and more by-product are formed in comparison with a free-enzyme catalyzed reaction. The model incorporates reaction with a heterogeneous enzyme distribution, electrostatically coupled transport, and pH-dependent dissociation behavior of reactants and is used to obtain insight in the complex interplay between these individual processes leading to the suboptimal conversion. The model was successfully validated with synthesis experiments for conditions ranging from heavily diffusion limited to hardly diffusion limited, including substrate concentrations from 50 to 600 mM, temperatures between 273 and 303 K, and pH values between 6 and 9. During the conversion of the substrates into cephalexin, severe pH gradients inside the biocatalytic particle, which were previously measured by others, were predicted. Physical insight in such intraparticle process dynamics may give important clues for future biocatalyst design. The modular construction of the model may also facilitate its use for other bioconversions with other biocatalysts.  相似文献   

4.
A laser flow cytometer was used to study different Escherichia coli populations under various cultivation conditions. A host strain E. coli 5K was analyzed for cell size, protein and DNA-content during continuous cultivation. Also, a recombinant E. coli 5K(pHM12) strain (used for the intracellular production of penicillin-G acylase) was studied in regard to gene expression using different cytometric techniques. An argon ion laser (30 mW) and a 100 W high-pressure mercury lamp were used as light source in the cytometer. A new fluorogenic staining technique for intracellular penicillin-G acylase is described.Recombinant E. coli temperature sensitive cells were analyzed for intracellular fusion protein production due to temperature induction.  相似文献   

5.
In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme‐specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25–65°C), optimum pH (3–10), thermal stability (4–70°C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This study demonstrates the potential of conforcal laser scanning microscopy (CLSM) as a characterization tool for different types of microparticles. Microparticles were prepared by various methods including complex coacervation, spray drying, double emulsion solvent evaporation technique, and ionotropic gelation. Protein drugs and particle wall polymers were covalently labeled with a fluorescent marker prior to particle preparation, while low molecular weight drugs were labeled by mixing with a fluorescent marker of similar solubility properties. As was demonstrated in several examples, CLSM allowed visualization of the polymeric particle wall composition and detection of heterogeneous polymer distribution or changes in polymer matrix composition under the influence of the drug. Furthermore, CLSM provides a method for three-dimensional reconstruction and image analysis of the microparticles by imaging several coplanar sections throughout the object. In conclusion, CLSM allows the inspection of internal particle structures without prior sample destruction. It can be used to localize the encapsulated compounds and to detect special structural details of the particle wall composition.  相似文献   

7.
Poly(ADP-ribose) glycohydrolase was purified approximately 74,000-fold to apparent homogeneity from calf thymus with a yield of 3.2%. The enzyme was a monomeric protein of Mr = 59,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The action of glycohydrolase on poly(ADP-ribose) was exoglycosidic in the direction of adenosine terminus----ribose terminus; radioactive ADP-ribose monomers were immediately produced from evenly labeled poly(ADP-ribose), but not from the polymer labeled selectively at the ribose terminus. The enzymatic degradation of large poly(ADP-ribose) (greater than 20 ADP-ribose residues) proceeded in a biphasic as well as bimodal manner. In the early and rapid phase, the enzyme degraded part of large polymers successively, leaving the remainder completely intact, and accumulated ADP-ribose monomers and small polymers of the size less than half of original polymers, indicating that the enzyme action was processive up to a certain extent. In the late and 20-fold slower phase, by contrast, the enzyme degraded the accumulated small polymers gradually and evenly, i.e. in a nonprocessive manner. The Km for large polymers was approximately 100-fold lower than that for small polymers. Similar rates and processivities were observed with large and small polymers bound to various proteins. These results suggested that the glycohydrolase may regulate differentially the levels of large and small poly(ADP-ribose) in the cell.  相似文献   

8.
Addition of bovine serum albumin (BSA) as a proteic feeder facilitates obtaining cross-linked enzyme aggregates (CLEAs) in cases where the protein concentration in the enzyme preparation is low and/or the enzyme activity is vulnerable to the high concentration of glutaraldehyde required to obtain aggregates. CLEAs of Pseudomonas cepacia lipase and penicillin acylase were prepared. CLEA of lipase prepared in the presence of BSA retained 100% activity whereas CLEA prepared without BSA retained only 0.4% activity of the starting enzyme preparation. Lipase CLEA showed 12-fold increase in activity over free enzyme powder when the CLEA was used in transesterification of tributyrin. For the transesterification of Jatropha oil, while free enzyme powder required 8 h and 50 mg lipase to obtain 77% conversion, CLEA required only 6 h and 6.25 mg lipase to obtain 90% conversion. In the case of penicillin acylase, 86% activity could be retained in CLEA prepared with BSA whereas CLEA made without BSA retained only 50% activity. CLEA prepared without BSA lost 20% activity after 8 h at 45 degrees C whereas CLEA with BSA retained full activity. CLEA prepared with BSA showed Vmax/Km of 36.3 min-1 whereas CLEA prepared without BSA had Vmax/Km of 17.4 min-1 only. Scanning electron microscopy analysis showed that CLEAs prepared in the presence of BSA were less amorphous and closer in morphology to CLEAs of other enzymes described in the literature.  相似文献   

9.
A novel type of biocatalyst that combines the good properties of cross-linked enzyme aggregates (CLEAs) and hydrophilic microenvironments has been developed. Dextran sulfate- and polyethyleneimine-coated CLEAs of penicillin acylase (CLEA-GDP) were prepared by adding the polymers of different sizes before the precipitation stage of the enzyme. This study presents the development and optimization of a protocol to produce such a biocatalyst using penicillin acylase as a model. Experiments show that CLEA-GDPs have a highly increased stability in organic media. The average half-life of the preparations was much higher than standard CLEA without a microenvironment (CLEA-G), (e.g., more than 25-fold) in the presence of dioxane. However, their thermal stability was not increased, which leads to the conclusion that the stability of CLEA-GDPs in organic media is due to the hydrophilic microenvironment that surrounds the protein enzyme more than to a conformational stiffening effect. This is further supported by solvation experiments that show a preferential hydration of CLEA when polymers are used to coat the enzyme. CLEA-GDPs are clearly better than other biocatalysts in terms of solvent stability.  相似文献   

10.
Cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS) are used to investigate the association of amphiphilic polymers consisting of a double-chain hydrophobic tail attached onto poly(ethylene glycol) (PEG) polymer chains into two different systems of equilibrium vesicles. For cetyltrimethylammonium bromide (CTAB)/sodium perfluorohexanoate (FC(5)) vesicle bilayers, the size distribution of the vesicles slightly becomes narrow in the presence of the polymers, suggesting that the wedge-shaped polymers increase the spontaneous curvature of the vesicles. In contrast, the confinement of polymer molecules inside the CTAB/sodium perfluorooctanoate (FC(7)) vesicles that are stabilized by spontaneous curvature causes an abrupt decrease in the bilayer rigidity. By an analysis of vesicle size distribution, it is found that the membrane elasticity of CTAB/FC(7) vesicles is varied considerably from 6k(B)T to 0.3k(B)T, implying the transition of stabilization mechanism from spontaneous curvature to thermal fluctuation in the presence of polymer. The polymer incorporation mechanism into the bilayers is understood, in the comparison of the vesicle radius and size distribution before and after adding polymer, as that the polymer is anchored into the vesicle bilayer owing to hydrophobic property after the adsorption on the surface of the bilayer.  相似文献   

11.
Amyloid β proteins spontaneously form fibrils in vitro that vary in their thermodynamic stability and in morphological characteristics such as length, width, shape, longitudinal twist, and the number of component filaments. It is vitally important to determine which variant best represents the type of fibril that accumulates in Alzheimer disease. In the present study, the nature of morphological variation was examined by dark-field and transmission electron microscopy in a preparation of seeded amyloid β protein fibrils that formed at relatively low protein concentrations and exhibited remarkably high thermodynamic stability. The number of filaments comprising these fibrils changed frequently from two to six along their length, and these changes only became apparent when mass-per-length (MPL) determinations are made with sufficient resolution. The MPL results could be reproduced by a simple stochastic model with a single adjustable parameter. The presence of more than two primary filaments could not be discerned by transmission electron microscopy, and they had no apparent relationship to the longitudinal twist of the fibrils. However, the pitch of the twist was strongly affected by the pH of the negative stain. We conclude that highly stable amyloid fibrils may form in which a surprising amount of intrinsic linear heterogeneity may be obscured by MPL measurements of insufficient resolution, and by the negative stains used for imaging fibrils by electron microscopy.  相似文献   

12.
Penicillin acylase has been immobilized to carboxymethylcellulose and to the resin Amberlite XAD7. The reaction kinetics of the enzyme were affected by both intrinsic (molecular) and microenvironmental effects. The Michaelis constant for the enzyme increased after immobilization as a result of an intrinsic effect of the reagent, glutaraldehyde, used for enzyme immobilization. Microenvironmental effects were of two types: diffusional limitation of access of substrate and a reaction-generated pH depression in the support particles. This depression of internal pH was observed in all the preparations and could be reduced by addition of pH buffering salts to reactor. An adsorbed pH-indicating dyc was used to determine the surface and internal pH of particles of XAD7–penicillin acylase under various reaction conditions. The extent of diffusional rate limitation in XAD7–penicillin acylase was related to the penetration depth of protein into the porous support particles. The penetration depth of protein and thus the diffusional limitation of the reaction rate could be controlled by the conditions of preparation of the immobilized enzyme. A staining technique was used to observe the location of the protein.  相似文献   

13.
Structural features of non-granular spherulitic maize starch   总被引:4,自引:0,他引:4  
Complementary analyses of the internal structure of spherulites crystallized from high-amylose maize starch were obtained using light, electron and atomic force microscopy. Radially oriented crystalline lamellae were observed in transmission and scanning electron microscopy, as well as AFM. Internal structures consistent with the central hilum region of starch granules were observed. Spherulites were composed largely of linear or lightly branched starch polymers. Degradation of amylopectin at gelatinization temperatures of 180 degrees C was evident, but iodine binding suggested a high molecular weight (>100 DP) for the spherulitic polymers.  相似文献   

14.
Aqueous cold-set gels from mixtures of agarose and sodium gellan have been characterised structurally and mechanically using optical and electron microscopy, turbidity measurements, differential scanning calorimetry, mechanical spectroscopy and compression testing. Consistent with expectations for charged–uncharged polymer combinations at low ionic strength there is no liquid–liquid demixing in sols prior to gelation, and although transmission electron microscopy reveals heterogeneities in gel microstructures at the higher polymer concentrations, these are small in extent, and are unlikely to arise from normal segregative demixing. Overall, ‘molecularly’ interpenetrating networks (IPNs) are indicated, in which the gellan and agarose architectures pass through one another on a distance scale comparable to their pore sizes. At concentrations greater than 2% w/w gellan, where gellan is the first gelling species, and when the agarose concentration is greater than 0.5% w/w, the composite modulus falls below that expected for the agarose alone. At 0.5% w/w agarose, on the other hand, modulus contributions from the components are much closer to additive. These findings are reflected in the results of large deformation compression testing where breaking stresses show similar trends.  相似文献   

15.
The effect of mixing penicillin acylase with poly(ethyleneimine) is discussed. The properties of the polymer-enzyme system were evaluated for a wide range of enzyme concentrations (0.3–45.5 mg/cm3) and poly(ethyleneimine) concentrations (0.0001–10% wt). It was shown that addition of poly(ethyleneimine) to crude enzyme preparation caused precipitation of ballast protein and stabilization of the enzyme fraction remaining in the supernatant. The soluble fraction had stable activity for 21 days storage at 37 °C while the native enzyme lost about 80% of its initial activity. Additionally, it was ascertained that the polymer very slightly affected the properties of penicillin acylase in the PEI-enzyme preparations. Finally, possible ways of using the polymer-enzyme preparations in a membrane reactor are suggested.This work was supported by Government Committee of Science: Grant KBN # 3 0321 91 1  相似文献   

16.
Penicillin G acylase is an important enzyme in the commercial production of semisynthetic penicillins used to combat bacterial infections. Mutant strains of Providencia rettgeri were generated from wild-type cultures subjected to nutritional selective pressure. One such mutant, Bro1, was able to use 6-bromohexanamide as its sole nitrogen source. Penicillin acylase from the Bro1 strain exhibited an altered substrate specificity consistent with the ability of the mutant to process 6-bromohexanamide. The X-ray structure determination of this enzyme was undertaken to understand its altered specificity and to help in the design of site-directed mutants with desired specificities. In this paper, the structure of the Bro1 penicillin G acylase has been solved at 2.5 A resolution by molecular replacement. The R-factor after refinement is 0.154 and R-free is 0.165. Of the 758 residues in the Bro1 penicillin acylase heterodimer (alpha-subunit, 205; beta-subunit, 553), all but the eight C-terminal residues of the alpha-subunit have been modeled based on a partial Bro1 sequence and the complete wild-type P. rettgeri sequence. A tightly bound calcium ion coordinated by one residue from the alpha-subunit and five residues from the beta-subunit has been identified. This enzyme belongs to the superfamily of Ntn hydrolases and uses Ogamma of Ser beta1 as the characteristic N-terminal nucleophile. A mutation of the wild-type Met alpha140 to Leu in the Bro1 acylase hydrophobic specificity pocket is evident from the electron density and is consistent with the observed specificity change for Bro1 acylase. The electron density for the N-terminal Gln of the alpha-subunit is best modeled by the cyclized pyroglutamate form. Examination of aligned penicillin acylase and cephalosporin acylase primary sequences, in conjunction with the P. rettgeri and Escherichia coli penicillin acylase crystal structures, suggests several mutations that could potentially allow penicillin acylase to accept charged beta-lactam R-groups and to function as a cephalosporin acylase and thus be used in the manufacture of semi-synthetic cephalosporins.  相似文献   

17.
Conjugation of penicillin acylase (PA) to poly-N-isopropylacrylamide (polyNIPAM) was studied as a way to prepare a thermosensitive biocatalyst for industrial applications to antibiotic synthesis. Condensation of PA with the copolymer of NIPAM containing active ester groups resulted in higher coupling yields of the enzyme (37%) compared to its chemical modification and copolymerization with the monomer (9% coupling yield) at the same NIPAM:enzyme weight ratio of ca. 35. A 10-fold increase of the enzyme loading on the copolymer resulted in 24% coupling yield and increased by 4-fold the specific PA activity of the conjugate. Two molecular forms of the conjugate were found by gel filtration on Sepharose CL 4B: the lower molecular weight fraction of ca. 10(6) and, presumably, cross-linked protein-polymer aggregates of MW > 10(7). Michaelis constant for 5-nitro-3-phenylacetamidobenzoic acid hydrolysis by the PA conjugate (20 microM) was found to be slightly higher than that of the free enzyme (12 microM), and evaluation of V(max) testifies to the high catalytic efficiency of the conjugated enzyme. PolyNIPAM-cross-linked PA retained its capacity to synthesize cephalexin from d-phenylglycin amide and 7-aminodeacetoxycephalosporanic acid. The synthesis-hydrolysis ratios of free and polyNIPAM-cross-linked enzyme in cephalexin synthesis were 7.46 and 7.49, respectively. Thus, diffusional limitation, which is a problem in the industrial production of beta-lactam antibiotics, can be successfully eliminated by cross-linking penicillin acylase to a smart polymer (i.e., polyNIPAM).  相似文献   

18.
Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigation of microscale associations. Electron microscopy has been used extensively for geomicrobial investigations, and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions by conventional electron microscopy approaches with imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding the nature of interactions between microbial extracellular polymers and their environment.  相似文献   

19.
【目的】筛选Pseudomonas sp.SE83 acy Ⅱ定点饱和突变库,获得动力学稳定性提高的头孢菌素C(CPC)酰化酶突变体,并对突变酶进行初步的结构-功能关系分析。【方法】靶标酶Pseudomonas sp.SE83 acy Ⅱ与Pseudomonas diminuta N176具有较高的同源性,通过分析N176的结构B因子,构建CPC酰化酶SE83定点饱和突变库;基于pH指示剂显色法,采用Biomek FX~P自动工作站建立CPC酰化酶高通量筛选方法,获得优良突变酶,对其活性、稳定性等酶学性质进行表征;利用SWISS-MODEL对突变体进行同源建模,探讨突变体结构与功能的关系。【结果】通过B因子分析和同源结构比对,共找出9个靶标位点;经过3轮筛选,发现R218及K226位点突变显著提高酶的热稳定性,其中最显著的R218Q和K226V在40°C的半衰期分别为野生型的3.77和2.77倍,催化效率k_(cat)/K_m分别为野生型的1.8和3.1倍。同源建模分析表明氢键作用和疏水相互作用的增加可能是突变体稳定性提高的原因。【结论】B因子指导的酶分子改造是一种高效可靠的动力学稳定性改造策略,突变体R218Q和K226V均可提高CPC酰化酶的稳定性和催化效率,对进一步的CPC酰化酶分子改造具有一定的参考价值和指导意义。  相似文献   

20.
A series of acrylamide-bisacrylamide copolymers modified by the Mannich Reaction was prepared. The immobilization of aminoacylase from Aspergillus oryzae on the copolymers was studied. All the polymers adsorbed the enzyme and the activity of the immobilized enzyme dependent on the amine used, viz. secondary amine, diamine, or aniline derivative. However, the activity was also influenced by the degree of crosslinking of the polymer. The surface morphology of the dimethylamine-modified polymer, with varying degrees of crosslinking, was analyzed by scanning electron microscope; the polymers having the largest pore diameter possessed the highest enzyme activity. One of the best polymers (DMA-A9B8) was used for immobilization of aminoacylase and its properties were studied. It had high enzymatic activity and good operational stability, i.e., retaining 90% of its original activity after being used for 42 days. The use of these copolymers for the preparation of immobilized enzymes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号