首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structurally abnormal type I collagen was identified in the dermis, bone, and cultured fibroblasts obtained from a baby with lethal perinatal osteogenesis imperfecta. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated that the alpha 1(I)CB7 peptide from the alpha 1(I)-chain of type I collagen existed in a normal form and a mutant form with a more basic charge distribution. This heterozygous peptide defect was not detected in the collagens from either parent. The defect was localized to a 224-residue region at the NH2 terminus of the alpha 1(I)CB7 peptide by mammalian collagenase digestion. Analysis of unhydroxylated collagens produced in cell culture indicated that the mutant alpha 1(I)CB7 migrated faster on electrophoresis suggesting that the abnormality may be a small deletion or a mutation that alters sodium dodecyl sulfate binding. The post-translational hydroxylation of lysine residues was increased in the CB7 peptide and also in peptides CB3 and CB8 which are toward the NH2 terminus of the alpha 1(I)-chain. The COOH-terminal CB6 peptide was normally hydroxylated. These findings support the proposal that the lysine overhydroxylation resulted from a perturbation of helix propagation from the COOH to NH2 terminus of the collagen trimer caused by the structural defect in alpha 1(I)CB7.  相似文献   

2.
M Yamauchi  E P Katz  G L Mechanic 《Biochemistry》1986,25(17):4907-4913
A trypsin digest of denatured NaB3H4-reduced native bovine periodontal ligament was prepared and fractionated by gel filtration and cellulose ion-exchange column chromatography. Prior to trypsin digestion, a complete acid hydrolysate was subjected to analyses for nonreducible stable and reducible intermolecular cross-links. Minute amounts of the former and significant amounts of the reduced cross-links dihydroxylysinonorleucine (1.1 mol/mol of collagen), hydroxylysinonorleucine (0.9 mol/mol of collagen), and histidinohydroxymerodesmosine (0.6 mol/mol of collagen) were found. The covalent intermolecular cross-linked two-chained peptides that were isolated were subjected to amino acid and sequence analyses. The structures for the different two-chained linked peptides were alpha 1CB4-5(76-90)[Hyl-87] X alpha 1CB6-(993-22c)[Lysald-16c], alpha 1CB4-5(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Hylald-16c], alpha 2CB4(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Lysald-16c], and alpha 2CB4(76-90)[Hyl-87] X alpha 1CB6(993-22c)[Hylald-16c]. The cross-link in each peptide was glycosylated. This is the first characterization by sequence analysis of a cross-link involving Hyl-87 in an alpha 2 chain in collagen. A stoichiometric conversion of residue 16c aldehyde to an intermolecular cross-link in each of the COOH-terminal nonhelical peptide regions of both alpha 1 chains in a molecule of type I collagen was found. The ratio of alpha 1 to alpha 2 intermolecularly cross-linked chains involved was 3.3:1, indicating a stereospecific three-dimensional molecular packing of type I collagen molecules in bovine periodontal ligament.  相似文献   

3.
P G Scott  A Veis  G Mechanic 《Biochemistry》1976,15(15):3191-3198
A peptide fraction isolated from a cyanogen bromide digest of bovine dentin collagen had a molecular weight of 46000. Its size and amino acid composition indicated that it could not consist of peptides derived from the cleavage of a single alpha chain. On reduction with tritiated sodium borohydride, radioactivity was incorporated primarily into 5, 5'-dihydroxylysinonorleucine without degradation at the peptide backbone. Periodate cleavage of the reduced or nonreduced peptide fraction generated one fragment of molecular weight 28000 and one of 18000 completely accounting for the size of the parent peptide. On amino acid analysis the constituent single-chain peptides were determined to be alpha2CB4 and alpha1CB6. Both peptides isolated after periodate oxidation of the tritiated borohydride reduced cross-link peptide were found to contain (3H)hydroxynorvaline. These data show that some hydroxylysine of alpha2CB4, a helical region peptide, was present in aldehyde form and could act as the aldehyde donor icross-link, Schiff's base formation. The only cross-linkage of this alpha2CB4 acting as an aldehyde donor peptide to alpha1CB6 would be a helical region to helical region bond, perhaps accounting for the unusual stability and low solubility of dentin collagen.  相似文献   

4.
The thermal triple helix-coil transition of the CNBr peptides of the α1-chain of calf-skin collagen was studied optically and calorimetrically. Besides α1CB5, all the peptides were able to form triple-helical structures at low temperatures. The peptides with longer chain lengths showed, under the experimental conditions, hysteresis in the transition range depending on the direction of the successive temperature changes. The detailed thermodynamic analysis of the optical transition curves was only possible for the two small peptides α1CB2 and α1CB4. We observed a higher stability of α1CB2 relative to α1CB4 (α1CB2 has higher imino acid content), accompanied with increased values of both denaturation enthalpy and entropy. Further, we observed a linear relationship between the calorimetrically determined denaturation enthalpy of all the CNBr peptides and their imino acid content. Although this behavior is qualitatively in accordance with the observation of Privalov and Tiktopulo on various kinds of native collagen, the CNBr peptides showed much lower values of the thermodynamic parameters ΔH0 and ΔS0 and differed also in the rate of their change with imino acid content. These differences are interpreted as being caused by misalignment in the helical form of the CNBr peptides resulting in a rupture of the specific interactions in the native form.  相似文献   

5.
Affinity-purified anticollagen IgG was fractionated on purified cyanogen bromide-derived collagen peptide Sepharose. The antibody fraction bound to the peptides was eluted and tested for its ability to induce passive arthritis in recipients. Anticollagen IgG bound to peptide 5 (alpha 1(II)-CB8-10 and alpha 1(II)CB11-8) and to peptide 6 (alpha 1(II)CB11) were active in inducing passive arthritis. Other peptide bound fractions were inactive. These observations suggest that the arthritogenic domain in Type II collagen is restricted to alpha 1(II)CB11.  相似文献   

6.
Type V collagen was prepared from human amnionic/chorionic membranes and separated into alpha 1(V) and alpha 2(V) polypeptide chains. The alpha 1(V) chain was digested with cyanogen bromide and nine peptides were obtained and purified. Three of the peptides, alpha 1(V)CB1, CB4, and CB7 having molecular weights of 5000, 8000, and 6000, respectively, were further analyzed by amino acid sequence analysis and thermolytic or tryptic digestions. CB1 contained 54 amino acids and identification of its complete sequence was aided by thermolysin digestion and isolation of two peptides, Th1 and Th2. CB4 contained 81 amino acids and sequence analysis of intact CB4 and five tryptic peptides provided us with its complete amino acid sequence. The peptide CB7 contained 67 amino acids and was cleaved into four tryptic peptides that were used for complete sequence analysis. The above results represent the first available covalent structure information on the alpha 1(V) collagen chain. These data enabled us to establish the location of these peptides within the helical structure of other collagen chains. CB4 was homologous to residues 66-145 in the collagen chain while CB1 represented residues 146-200 and CB7 was homologous with residues 201-269. This alignment was facilitated by identification of a helical collagen crossing site consisting of Hyl-Gly-His-Arg located at positions 87-90 in all collagen chains of this size thus far identified. Seventy-one percent homology (excluding Gly residues) was found between amino acids in this region of the alpha 1(XI) and of alpha 1(V) collagen chains while only 21 and 19% identity was calculated for the same region of alpha 2(V) and alpha 1(I) collagen chains, respectively.  相似文献   

7.
Cross-linked peptides were isolated from chicken bone collagen that had been digested with CNBr or with bacterial collagenase. Analyses of (3)H radioactivity in disc electrophoretic profiles of the CNBr peptides from bone collagens that had been treated with NaB(3)H indicated that a major site of intermolecular cross-linking in chicken bone collagen is located between the carboxy-terminal region of an alpha1 chain and a small CNBr peptide, probably situated near the amino-terminus of an alpha1 or alpha2 chain in an adjacent collagen molecule. A small amount of this cross-linked CNBr peptide was isolated from a CNBr digest of chicken bone collagen by column chromatography. Amino acid analysis showed that the CNBr peptide, alpha1CB6B, the carboxy-terminal peptide of the alpha1 chain, was the major CNBr peptide in the preparation, and the reduced cross-linking components were identified as hydroxylysinohydroxynorleucine (HylOHNle), with a smaller amount of hydroxylysinonorleucine (HylNle). However, the composition and the low recovery of the cross-linking amino acids suggested that the preparation was a mixture of CNBr peptides alpha1CB6B and alpha1CB6B cross-linked to a small CNBr peptide whose identity could not be determined. A small cross-linked peptide was isolated from chicken bone collagen that had been reduced with NaB(3)H(4) and digested with bacterial collagenase. This peptide was the major cross-linked peptide in the digest and contained a stoicheiometric amount of the reduced cross-linking compounds. A peptide which had the same amino acid composition, but contained the cross-linking compounds in their reducible forms, was isolated from a collagenase digest of chicken bone collagen that had not been treated with NaBH(4). The absence of the reduced cross-links from this peptide indicates that, at least for the cross-linking site from which the peptide derives, natural reduction is not a significant pathway for biosynthesis of stable cross-links. However, most of the reducible cross-linking component in the peptide appeared to stabilize in the bone collagen by rearrangement from aldimine to ketoamine form.  相似文献   

8.
Bovine type I collagen: A study of cross-linking in various mature tissues   总被引:1,自引:0,他引:1  
The cyanogen bromide peptides from insoluble and pepsin solubilised type I collagen of bovine bone, dentine, meniscus, tendon, skin and cornea were compared by SDS-polyacrylamide gel electrophoresis. In each case alpha 1CB6 was shown to be the only peptide of molecular weight greater than 10 000 involved in cross-linking. The major helical peptides alpha 1CB3, alpha 1CB8, alpha 1CB7 and alpha 2CB4 were not implicated in cross-linking in any tissue either by end overlap or helix-helix interaction. The C-terminal alpha 2 chain peptide alpha 2CB3,5, which contains a large helical region, was not involved in cross-linking to any large peptides, although a slight increase in molecular weight in all tissues examined did suggest a possible interaction(s) with a very small peptide of molecular weight 4--5000.  相似文献   

9.
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development.  相似文献   

10.
11.
Hudson DM  Kim LS  Weis M  Cohn DH  Eyre DR 《Biochemistry》2012,51(12):2417-2424
Proline residues in collagens are extensively hydroxylated post-translationally. A rare form of this modification, (3S,2S)-l-hydroxyproline (3Hyp), remains without a clear function. Disruption of the enzyme complex responsible for prolyl 3-hydroxylation results in severe forms of recessive osteogenesis imperfecta (OI). These OI types exhibit a loss of or reduction in the level of 3-hydroxylation at two proline residues, α1(I) Pro986 and α2(I) Pro707. Whether the resulting brittle bone phenotype is caused by the lack of the 3-hydroxyl addition or by another function of the enzyme complex is unknown. We have speculated that the most efficient mechanism for explaining the chemistry of collagen intermolecular cross-linking is for pairs of collagen molecules in register to be the subunit that assembles into fibrils. In this concept, the exposed hydroxyls from 3Hyp are positioned within mutually interactive binding motifs on adjacent collagen molecules that contribute through hydrogen bonding to the process of fibril supramolecular assembly. Here we report observations on the physical binding properties of 3Hyp in collagen chains from experiments designed to explore the potential for interaction using synthetic collagen-like peptides containing 3Hyp. Evidence of self-association was observed between a synthetic peptide containing 3Hyp and the CB6 domain of the α1(I) chain, which contains the single fully 3-hydroxylated proline. Using collagen from a case of severe recessive OI with a CRTAP defect, in which Pro986 was minimally 3-hydroxylated, such binding was not observed. Further study of the role of 3Hyp in supramolecular assembly is warranted for understanding the evolution of tissue-specific variations in collagen fibril organization.  相似文献   

12.
A baby with the lethal perinatal form of osteogenesis imperfecta was shown to have a structural defect in the alpha 1(I) chain of type I procollagen. Normal and mutant alpha 1(I) CB8 cyanogen bromide peptides, from the helical part of the alpha 1(I) chains, were purified from bone. Amino acid sequencing of tryptic peptides derived from the mutant alpha 1(I) CB8 peptide showed that the glycine residue at position 391 of the alpha 1(I) chain had been replaced by an arginine residue. This substitution accounted for the more basic charged form of this peptide that was observed on two-dimensional electrophoresis of the collagen peptides obtained from the tissues. The substitution was associated with increased enzymatic hydroxylation of lysine residues in the alpha 1(I) CB8 and the adjoining CB3 peptides but not in the carboxyl-terminal CB6 and CB7 peptides. This finding suggested that the sequence abnormality had interfered with the propagation of the triple helix across the mutant region. The abnormal collagen was not incorporated into the more insoluble fraction of bone collagen. The baby appeared to be heterozygous for the sequence abnormality and as the parents did not show any evidence of the defect it is likely that the baby had a new mutation of one allele of the pro-alpha 1(I) gene. The amino acid substitution could result from a single nucleotide mutation in the codon GGC (glycine) to produce the codon CGC (arginine).  相似文献   

13.
The heterogeneity of the CNBr-cleavage peptides of human types I, II, III and V collagens were studied by using two-dimensional electrophoresis combining non-equilibrium pH-gradient-gel electrophoresis and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Specific 'maps' were produced by the peptides obtained from the chains of each type of collagen, and most peptides had at least three charged forms of the same molecular weight. Specific 'maps' were also produced by the peptides of types I, III and V collagens from insoluble dermis and the peptides of types I and V collagens from decalcified bone. The alpha 1(I) CB7 and alpha 1(I) CB8 and the alpha 2 CB4 peptides obtained from the type I collagens of these tissues contained the same number of charged components, but there was a relative increase in the more basic components in bone. Some aspects of the involvement of the alpha 1(I) CB6 and the alpha 1(III) CB9 peptides in cross-linkages were also studied. The recovery of the alpha 1(I) CB6 peptide from bone and dermis was decreased and the alpha 1(III) CB9 peptide was not detected in dermis. Additional peptides, which were probably cross-linked peptides involving the alpha 1(I) CB6 peptide, were also observed.  相似文献   

14.
A patient with Ehlers-Danlos syndrome Type VIIB was found to have an interstitial deletion of 18 amino acids in approximately half of the pro-alpha 2(I) chains of Type I procollagen. Analysis of pepsin-solubilized tissue and fibroblast collagen revealed an abnormal additional chain, alpha 2(I)', which migrated in sodium dodecyl sulfate-5% polyacrylamide gel electrophoresis between the normal alpha 1(I) and alpha 2(I) chains. The apparent ratio of normal alpha 1(I):mutant alpha 2(I)':normal alpha 2(I) was 4:1:1. Procollagen studies and enzyme digestion studies of native mutant collagen suggested defective removal of the amino propeptide. Sieve chromatography of CNBr peptides from purified alpha 2(I)' chains revealed the absence of the normal amino telopeptide fragment CB 1 and the appearance of a larger new peptide of approximately 60 residues (CB X). Compositional and sequencing studies of this peptide identified normal amino propeptide sequences. However, the most carboxyl-terminal tryptic peptide of CB X differed substantially in composition and sequence from the expected and was found to have an interstitial deletion of 18 amino acids corresponding to the N-telopeptide of the pro-alpha 2(I) chain. This deletion removes the normal sites of cleavage of the N-proteinase and also removes a critical cross-linking lysine residue. The 18 amino acids deleted correspond exactly to the residues encoded by exon 6 of the pro-alpha 2(I) collagen gene (COL 1 A2), and, therefore, the protein defect may be due to a genomic deletion, or alternatively, an RNA splicing defect.  相似文献   

15.
The interaction of bilirubin with collagen in the significance of jaundice incidence have been previously reported and investigated. The novel peptide sequences containing bilirubin binding domain was identified and located to develop a basis for further studies investigating the interactions of collagen with bilirubin in the present study. In this study an intricate interaction between bilirubin and collagen was characterized and their binding domain has been established using in-gel digestion and LC–MS/MS analysis based on the collagen sequencing and peptide mass fingerprinting. The biotinylated bilirubin derivatives bind to α1(I) chain but not to α2(I) chains which clearly designates that bilirubin shows greater affinity to α1 chains of collagen. The intact proteins collected after analyzing the resulting complex mixture of peptides was used for peptide mapping. Using the electrospray method, among the other peptide sequence information obtained, the molecular weight of collagen alpha-2(I) chain was obtained by locating a 130 kDa weight peptide sequences with greater pi value (9.14) with 1,364 amino acid residues and collagen alpha-1(I) chain with 1,463 amino acid residues with 138.9 kDa molecular weight. This information leads to locate the exact sequence of these helices focussing on the domain identification. The total charge of the peptide domain sequences infers that the bilirubin participates in the electrostatic mode of interaction with collagen peptide. Moreover, other modes of interactions such as hydrogen bonding, covalent interactions and hydrophobic interactions are possible.  相似文献   

16.
Because alignment of the amino acid sequences of chick skin collagen α2-CB3 (1) with the relevant portion of chick skin collagen α1-CB7 (2) suggested that a Gly-X-Y triplet may have been missed in the latter, the peptide TM-2, produced by tryptic digestion of maleylated α1-CB7, was reinvestigated. Cleavage by trypsin at the unblocked lysine at position 18, and isolation of the resulting COOH-terminal peptide, showed this to be a 15-residue peptide containing a previously unrecognized Gly-Pro-Hyp triplet. Sequencing of the peptide showed this to occupy positions 4 through 6, or 56 through 58 of α1-CB7. The latter thus has 271 instead of 268 residues, and the α1[I] chain 1055 instead of 1052.  相似文献   

17.
The objective of this study was to determine whether a peptide of type II collagen which can induce collagenase activity can also induce chondrocyte terminal differentiation (hypertrophy) in articulate cartilage. Full depth explants of normal adult bovine articular cartilage were cultured with or without a 24 mer synthetic peptide of type II collagen (residues 195-218) (CB12-II). Peptide CB12-II lacks any RGD sequence and is derived from the CB12 fragment of type II collagen. Type II collagen cleavage by collagenase was measured by ELISA in cartilage and medium. Real-time RT-PCR was used to analyze gene expression of the chondrocyte hypertrophy markers COL10A1 and MMP-13. Immunostaining for anti-Ki67, anti-PCNA, (proliferation markers), type X collagen, cleavage of type II collagen by collagenases (hypertrophy markers) and TUNEL staining (hypertrophy and apoptosis markers) were used to detect progressive maturational stages of chondrocyte hypertrophy. At high but naturally occurring concentrations (10 microM and up) the collagen peptide CB12-II induced an increase in the expression of MMP-13 (24 h) and cleavage of type II collagen by collagenase in the mid zone (day 4) and also in the superficial zone (day 6). Furthermore the peptide induced an increase in proliferation on day 1 in the mid and deep zones extending to the superficial zone by day 4. There was also upregulation of COL10A1 expression at day 4 and of type X staining in the mid zone extending to the superficial zone by day 6. Apoptotic cell death was increased by day 4 in the lower deep zone and also in the superficial zone at day 7. The increase in apoptosis in the deep zone was also seen in controls. Our results show that the induction of collagenase activity by a cryptic peptide sequence of type II collagen, is accompanied by chondrocyte hypertrophy and associated with cellular and matrix changes. This induction occurs in the mid and superficial zones of previously healthy articular cartilage. This response of the chondrocyte to a cryptic sequence of denatured type II collagen may play a role in naturally occurring hypertrophy in endochondral ossification and in the development of cartilage pathology in osteoarthritis.  相似文献   

18.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

19.
Preparations have been made of acid-soluble collagens whose telopeptides have suffered different levels of proteolytic attack. The collagens with more intact telopeptides form fibrils more rapidly than those with degraded telopeptides. In addition, we have shown that a high molecular weight aggregate rich in the carboxyterminal CNBr peptide, α1CB6, can be found in cyanogen bromide digests of fibrils formed from intact collagen. A similar aggregate is found in CNBr digests of native tendons. The aggregate formed in fibrils assembled in vitro can be stabilized by reduction, and its generation is strongly dependent on the presence of intact telopeptides. The latter point is the most objective evidence that to reproduce the characteristics of native fibrils in vitro, the collagen telopeptides must be preserved from proteolysis.  相似文献   

20.
We have determined the 1.8 Å crystal structure of a triple helical integrin-binding collagen peptide (IBP) with sequence (Gly-Pro-Hyp)2-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)3. The central GFOGER hexapeptide is recognised specifically by the integrins α2β1, α1β1, α10β1 and α11β1. These integrin/collagen interactions are implicated in a number of key physiological processes including cell adhesion, cell growth and differentiation, and pathological states such as thrombosis and tumour metastasis. Comparison of the IBP structure with the previously determined structure of an identical collagen peptide in complex with the integrin α2-I domain (IBPc) allows the first detailed examination of collagen in a bound and an unbound state. The IBP structure shows a direct and a water-mediated electrostatic interaction between Glu and Arg side-chains from adjacent strands, but no intra-strand interactions. The interactions between IBP Glu and Arg side-chains are disrupted upon integrin binding. A comparison of IBP and IBPc main-chain conformation reveals the flexible nature of the triple helix backbone in the imino-poor GFOGER region. This flexibility could be important to the integrin-collagen interaction and provides a possible explanation for the unique orientation of the three GFOGER strands observed in the integrin-IBPc complex crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号