首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this research was to evaluate the roles of calpains and their interactions with the proteasome and the lysosome in degradation of individual sarcomeric and cytoskeletal proteins in cultured muscle cells. Rat L8-CID muscle cells, in which we expressed a transgene calpain inhibitor (CID), were used in the study. L8-CID cells were grown as myotubes after which the relative roles of calpain, proteasome and lysosome in total protein degradation were assessed during a period of serum withdrawal. Following this, the roles of proteases in degrading cytoskeletal proteins (desmin, dystrophin and filamin) and of sarcomeric proteins (alpha-actinin and tropomyosin) were assessed. Total protein degradation was assessed by release of radioactive tyrosine from pre-labeled myotubes in the presence and absence of protease inhibitors. Effects of protease inhibitors on concentrations of individual sarcomeric and cytoskeletal proteins were assessed by Western blotting. Inhibition of calpains, proteasome and lysosome caused 20, 62 and 40% reductions in total protein degradation (P<0.05), respectively. Therefore, these three systems account for the bulk of degradation in cultured muscle cells. Two cytoskeletal proteins were highly-sensitive to inhibition of their degradation. Specifically, desmin and dystrophin concentrations increased markedly when calpain, proteasome and lysosome activities were inhibited. Conversely, sarcomeric proteins (alpha-actinin and tropomyosin) and filamin were relatively insensitive to the addition of protease inhibitors to culture media. These data demonstrate that proteolytic systems work in tandem to degrade cytoskeletal and sarcomeric protein complexes and that the cytoskeleton is more sensitive to inhibition of degradation than the sarcomere. Mechanisms, which bring about changes in the activities of the proteases, which mediate muscle protein degradation are not known and represent the next frontier of understanding needed in muscle wasting diseases and in muscle growth biology.  相似文献   

2.
Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1.  相似文献   

3.
Olfactory systems undergo continuous growth and turnover in many animals. Many decapod crustaceans, such as lobsters and crayfish, have indeterminate growth, and in these animals, turnover of both peripheral and central components of the olfactory system occurs continuously throughout life. In this study, we examine the dynamics of olfactory receptor neuron (ORN) proliferation in the antennule of the Caribbean spiny lobster, Panulirus argus, using in vivo incorporation of the cell proliferation marker BrdU. We show that addition of ORNs occurs in a "proximal proliferation zone" (PPZ), which exists on the proximo-lateral margin of the existing ORN population. The PPZ is spatially and temporally dynamic in that it travels as a wave in the proximal and lateral directions in the antennule. This wave results in continuous addition of ORNs throughout the molt cycle. The rate of proliferation, as measured by the size and shape of the PPZ, changes depending on the animal's molt stage. The rate is highest during premolt and lowest during intermolt. ORNs are the most prominent cell-type produced in the PPZ, but other cell types, including glia, are also produced. Patches of proliferating epithelial cells occur immediately proximal to the PPZ, suggesting that neuronal and glial precursors reside in this region. Possible mechanisms for peripheral and central modulation of ORN development are discussed.  相似文献   

4.
Sarcomeres are the smallest contractile units of heart and skeletal muscles and are essential for generation and propagation of mechanical force in these striated muscles. During the last decades it has become increasingly clear that components of sarcomeres also play a fundamental role in signal transduction in physiological and pathophysiological conditions. Mutations or misexpression of both sarcomeric contractile and non-contractile proteins have been associated with a variety of cardiac diseases. Moreover, re-expression of foetal sarcomeric proteins or isoforms during cardiac disease can be observed, emphasising the importance of understanding signalling in sarcomeres in both development and disease. The prospective of pharmacological intervention at the level of the sarcomere is now emerging and may lead to novel therapeutic strategies for the treatment of cardiac and skeletal muscle diseases. These aspects will be discussed in this brief review and recent findings, which led to novel insights into the role of the sarcomeric cytoskeleton in muscle development and disease, will be highlighted.  相似文献   

5.
Muscle assembly: a titanic achievement?   总被引:13,自引:0,他引:13  
The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.  相似文献   

6.
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.  相似文献   

7.
8.
Role of the calpain system in muscle growth.   总被引:8,自引:0,他引:8  
Muscle protein degradation has an important role in rate of muscle growth. It has been difficult to develop procedures for measuring rate of muscle protein degradation in living animals, and most studies have used in vitro systems and muscle strips to determine rate of protein degradation. The relationship between results obtained by using muscle strips and rate of muscle protein turnover in living animals is unclear because these strips are in negative nitrogen balance and often develop hypoxic cores. Also, rate of protein degradation is usually estimated by release of labeled amino acids, which reflects an average rate of degradation of all cellular proteins and does not distinguish between rates of degradation of different groups of proteins such as the sarcoplasmic and the myofibrillar proteins in muscle. A number of studies have suggested that the calpain system initiates turnover of myofibrillar proteins, which are the major group of proteins in striated muscle, by making specific cleavages that release thick and thin filaments from the surface of the myofibril and large polypeptide fragments from some of the other myofibrillar proteins. The calpains do not degrade myofibrillar proteins to small peptides or to amino acids, and they cause no bulk degradation of sarcoplasmic proteins. Hence, the calpains are not directly responsible for release of amino acids during muscle protein turnover. Activity of the calpains in living cells is regulated by calpastatin and Ca2+, but the nature of this regulation is still unclear.  相似文献   

9.
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.  相似文献   

10.
The distinctive contractile and metabolic characteristics of different skeletal muscle fiber types are associated with different protein populations in these cells. In the present work, we investigate the regulation of concentrations of three glycolytic enzymes (aldolase, enolase, glyceraldehyde-3-phosphate dehydrogenase) and creatine-phosphate kinase in “fast-twitch” (breast) and “slow-twitch” (lateral adductor) muscles of the chicken. Results of short-term amino acid incorporation experiments conducted both in vivo and with muscle explants in vitro showed that these enzymes turnover at different rates and that aldolase turns over 2 to 3 times faster than the other three enzymes. However, these differences in turnover rates were difficult to detect in long-term double-isotope incorporation experiments, presumably because extensive reutilization of labeled amino acids occurred during these long-term experiments. Mature muscle fibers synthesize these four cytosolic enzymes at very high rates. For example, 11 to 14% of the total labeled leucine incorporated into protein by breast muscle fibers was found in the enzyme aldolase. Results of short-term amino acid incorporation experiments also showed that the relative rates of synthesis of the three glycolytic enzymes were about fourfold higher in mature “fast-twitch” muscle fibers than in mature “slow-twitch” ones while the relative rates of synthesis of creatine-phosphate kinase were similar in the two fiber types. The relative rates of synthesis of these four enzymes and cytosolic proteins in general were found to be very similar in immature muscles of both types. More profound changes in the relative rates of synthesis of major cytosolic proteins, including the glycolytic enzymes, occurred during postembryonic maturation of fast-twitch fibers than occurred during maturation of slow-twitch fibers. Our work demonstrates that (1) the synthesis of creatine-phosphate is independently regulated with respect to the synthesis of the glycolytic enzymes in muscle fibers; and (2) the approximate fourfold higher steady-state concentrations of glycolytic enzymes in fast-twitch muscle fibers as compared with slow-twitch fibers are determined predominantly by regulatory mechanisms operating at the level of protein synthesis rather than protein degradation. Our demonstration that more profound changes in the relative rates of synthesis of major cytosolic proteins occur during maturation of fast-twitch fibers as compared with slow-twitch fibers is discussed in terms of the mode(s) of fiber-type differentiation proposed by others.  相似文献   

11.
Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.  相似文献   

12.
The heart is the first organ to form and function during vertebrate embryogenesis. Using a secreted protein, noggin, which specifically antagonizes bone morphogenetic protein (BMP)-2 and -4, we examined the role played by BMP during the initial myofibrillogenesis in chick cultured precardiac mesoendoderm (mesoderm + endoderm; ME). Conditioned medium from COS7 cells transfected with Xenopus noggin cDNA inhibited the expression of sarcomeric proteins (such as sarcomeric alpha-actinin, Z-line titin, and sarcomeric myosin), and so myofibrillogenesis was perturbed in cultured stage 4 precardiac ME; however, it did not inhibit the expression of smooth muscle alpha-actin (the first isoform of alpha-actin expressed during cardiogenesis). In cultured stage 5 precardiac ME, noggin did not inhibit either the formation of I-Z-I components or the expression of sarcomeric myosin, but it did inhibit the formation of A-bands. Although BMP4 was required to induce expressions of sarcomeric alpha-actinin, titin, and sarcomeric myosin in cultured stage 6 posterolateral mesoderm (noncardiogenic mesoderm), smooth muscle alpha-actin was expressed without the addition of BMP4. Interestingly, in cultured stage 6 posterolateral mesoderm, BMP2 induced the expressions of sarcomeric alpha-actinin and titin, but not of sarcomeric myosin. These results suggest that (1) BMP4 function lies upstream of the initial formation of I-Z-I components and A-bands separately in a stage-dependent manner, and (2) at least two signaling pathways are involved in the initial cardiac myofibrillogenesis: one is an unknown pathway responsible for the expression of smooth muscle alpha-actin; the other is BMP signaling, which is involved in the expression of sarcomeric alpha-actinin, titin, and sarcomeric myosin.  相似文献   

13.
The sarcomere is the major structural and functional unit of striated muscle. Approximately 65 different proteins have been associated with the sarcomere, and their exact composition defines the speed, endurance, and biology of each individual muscle. Past analyses relied heavily on electrophoretic and immunohistochemical techniques, which only allow the analysis of a small fraction of proteins at a time. Here we introduce a quantitative label-free, shotgun proteomics approach to differentially quantitate sarcomeric proteins from microgram quantities of muscle tissue in a fast and reliable manner by liquid chromatography and mass spectrometry. The high sequence similarity of some sarcomeric proteins poses a problem for shotgun proteomics because of limitations in subsequent database search algorithms in the exclusive assignment of peptides to specific isoforms. Therefore multiple sequence alignments were generated to improve the identification of isoform specific peptides. This methodology was used to compare the sarcomeric proteome of the extraocular muscle allotype to limb muscle. Extraocular muscles are a unique group of highly specialized muscles with distinct biochemical, physiological, and pathological properties. We were able to quantitate 40 sarcomeric proteins; although the basic sarcomeric proteins in extraocular muscle are similar to those in limb muscle, key proteins stabilizing the connection of the Z-bands to thin filaments and the costamere are augmented in extraocular muscle and may represent an adaptation to the eccentric contractions known to normally occur during eye movements. Furthermore, a number of changes are seen that closely relate to the unique nature of extraocular muscle.  相似文献   

14.
Body size and development time are important life history traits because they are often highly correlated with fitness. Although the developmental mechanisms that control growth have been well studied, the mechanisms that control how a species-characteristic body size is achieved remain poorly understood. In insects adult body size is determined by the number of larval molts, the size increment at each molt, and the mechanism that determines during which instar larval growth will stop. Adult insects do not grow, so the size at which a larva stops growing determines adult body size. Here we develop a quantitative understanding of the kinetics of growth throughout larval life of Manduca sexta, under different conditions of nutrition and temperature, and for genetic strains with different adult body sizes. We show that the generally accepted view that the size increment at each molt is constant (Dyar’s Rule) is systematically violated: there is actually a progressive increase in the size increment from instar to instar that is independent of temperature. In addition, the mass-specific growth rate declines throughout the growth phase in a temperature-dependent manner. We show that growth within an instar follows a truncated Gompertz trajectory. The critical weight, which determines when in an instar a molt will occur, and the threshold size, which determines which instar is the last, are different in genetic strains with different adult body sizes. Under nutrient and temperature stress Manduca has a variable number of larval instars and we show that this is due to the fact that more molts at smaller increments are taken before threshold size is reached. We test whether the new insight into the kinetics of growth and size determination are sufficient to explain body size and development time through a mathematical model that incorporates our quantitative findings.  相似文献   

15.
The M band of sarcomeric muscle is a highly complex structure which contributes to the maintenance of the regular lattice of thick filaments. We propose that the spatial coordination of this assembly is regulated by specific interactions of myosin filaments, the M band protein myomesin and the large carboxy-terminal region of titin. Corresponding binding sites between these proteins were identified. Myomesin binds myosin in the central region of light meromyosin (LMM, myosin residues 1506-1674) by its unique amino-terminal domain My1. A single titin immunoglobulin domain, m4, interacts with a myomesin fragment spanning domains My4-My6. This interaction is regulated by phosphorylation of Ser482 in the linker between myomesin domains My4 and My5. Myomesin phosphorylation at this site by cAMP-dependent kinase and similar or identical activities in muscle extracts block the association with titin. We propose that this demonstration of a phosphorylation-controlled interaction in the sarcomeric cytoskeleton is of potential relevance for sarcomere formation and/or turnover. It also reveals how binding affinities of modular proteins can be regulated by modifications of inter-domain linkers.  相似文献   

16.
17.
Because growth of new hairs entails energetic costs, individual condition and access to food should determine the timing of molt. Previous studies on the timing of molt in ungulates have mostly focused on the influence of age class and reproductive status, but the effects of body condition and environmental phenology have not been evaluated. Our goal was to assess how intrinsic traits and environmental conditions determine the timing of winter coat shedding in a mountain goat population monitored for 27 years. The date of molt completion followed a U shape with age, suggesting that senescence occurs in terms of the molting process in mountain goats. Juveniles of both sexes delayed molting in a similar fashion, but molt timing differed between sexes during adulthood. Males molted progressively earlier until reaching age when reproduction peaked, after which they started delaying molting again. Females reached earliest molt dates at age of first reproduction and then progressively delayed molt date. Lactating females molted 10 days later than barren females on average, but this only occurred in females in good condition. Thus, although it has been shown that reproduction delays molt in ungulates, our results indicate that body condition can override this effect. Overall, our results revealed that access to both extrinsic and intrinsic resources is one of the key mechanisms driving molting processes in a mammalian herbivore.  相似文献   

18.
A strain of axolotl, Ambystoma mexicanum, that carries the cardiac lethal or c gene presents an excellent model system in which to study inductive interactions during heart development. Embryos homozygous for gene c contain hearts that fail to beat and do not form sarcomeric myofibrils even though muscle proteins are present. Although they can survive for approximately three weeks, mutant embryos inevitably die due to lack of circulation. Embryonic axolotl hearts can be maintained easily in organ culture using only Holtfreter's solution as a culture medium. Mutant hearts can be induced to differentiate in vitro into functional cardiac muscle containing sarcomeric myofibrils by coculturing the mutant heart tube with anterior endoderm from a normal embryo. The induction of muscle differentiation can also be mediated through organ culture of mutant heart tubes in medium 'conditioned' by normal anterior endoderm. Ribonuclease was shown to abolish the ability of endoderm-conditioned medium to induce cardiac muscle differentiation. The addition of RNA extracted from normal early embryonic anterior endoderm to organ cultures of mutant hearts stimulated the differentiation of these tissues into contractile cardiac muscle containing well-organized sarcomeric myofibrils, while RNA extracted from early embryonic liver or neural tube did not induce either muscular contraction or myofibrillogenesis. Thus, RNA from anterior endoderm of normal embryos induces myofibrillogenesis and the development of contractile activity in mutant hearts, thereby correcting the genetic defect.  相似文献   

19.
The mechanisms that regulate sarcomere assembly during myofibril formation are poorly understood. In this study, we characterise the zebrafish sloth(u45) mutant, in which the initial steps in sarcomere assembly take place, but thick filaments are absent and filamentous I-Z-I brushes fail to align or adopt correct spacing. The mutation only affects skeletal muscle and mutant embryos show no other obvious phenotypes. Surprisingly, we find that the phenotype is due to mutation in one copy of a tandemly duplicated hsp90a gene. The mutation disrupts the chaperoning function of Hsp90a through interference with ATPase activity. Despite being located only 2 kb from hsp90a, hsp90a2 has no obvious role in sarcomere assembly. Loss of Hsp90a function leads to the downregulation of genes encoding sarcomeric proteins and upregulation of hsp90a and several other genes encoding proteins that may act with Hsp90a during sarcomere assembly. Our studies reveal a surprisingly specific developmental role for a single Hsp90 gene in a regulatory pathway controlling late steps in sarcomere assembly.  相似文献   

20.
BackgroundThe sarcomere structure of skeletal muscle is determined through multiple protein–protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization.MethodsC2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level.ResultsOur data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin.ConclusionsFor the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure.General significanceIn the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号