首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein-synthesis dependent long-term facilitation (LTF) produced by 5-HT that decays rapidly. Changes in expression of a SN-specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5-HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5-HT was blocked by anisomycin or was reversed 48 h after 5-HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long-term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals.  相似文献   

2.
Serotonin (5‐HT) and the neuropeptide Phe‐Met‐Arg‐Phe‐amide (FMRFa) modulate synaptic efficacy of sensory neurons (SNs) of Aplysia in opposite directions and for long duration. Both long‐term responses require changes in mRNA and protein synthesis. The SN‐specific neuropeptide, sensorin A, is a gene product that appears to be increased by 5‐HT and decreased by FMRFa. We examined whether changes in sensorin A mRNA levels in the cell body and neurites of SNs accompany long‐term facilitation and depression. Both 5‐HT and FMRFa evoked rapid changes in sensorin A mRNA levels in the SN cell bodies: an increase with 5‐HT and a decrease with FMRFa. Parallel changes in sensorin A mRNA levels in SN neurites were detected 2 h and 4 h later. These rapid changes in mRNA expression and net export required the presence of the appropriate target motor cell L7. The neuromodulators failed to produce changes in mRNA expression or export when SNs were cultured alone or with the inappropriate target cell L11. The changes in mRNA expression were transient because mRNA levels returned to control values 24 h after treatment, while synaptic efficacy remained altered by the respective treatments. These results indicate that two neuromodulators produce distinct, but transient, target‐dependent effects on expression and export of a cell‐specific mRNA that correlate with changes in synaptic plasticity. © 2000 John Wiley & Sons, Inc. J Neurobiol 46: 41–47, 2001  相似文献   

3.
The synapses between the sensory neuron (SN) and motor neuron of Aplysia undergo long-term functional and structural modulation with appropriate behavioral training or with applications of specific neuromodulators. Expression of molecules within the presynaptic terminals may be regulated in parallel with the changes evoked by the neuromodulators. We examined with immunocytochemical methods whether the level of sensorin, the SN-specific neuropeptide, is modulated in SN varicosities by the location of interaction with the target motor cell L7 and by applications of either 5-HT that evoke long-term facilitation or FMRFamide that evoke long-term depression of Aplysia sensorimotor connections in vitro. A significantly higher proportion of SN varicosities are sensorin positive when they are in contact with the proximal axons of L7 compared to varicosities of the same SNs in contact with distal L7 neurites. Both 5-HT and FMRFamide evoked changes in the efficacy and structure of sensorimotor connections that are accompanied by changes in the frequency of sensorin-positive varicosities contacting the axons of L7. More preexisting SN varicosities are stained after 5-HT, and fewer preexisting SN varicosities are stained after FMRFamide. These results suggest that the postsynaptic target and the neuromodulators not only regulate overall structure but also regulate the level of SN neuropeptide at synaptic sites. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
To investigate further the cellular mechanisms underlying long-term facilitation (LTF) and long-term synapse-specific facilitation (LTSSF), we studied the role of axonal transport and somatic and synaptic protein synthesis at proximal and distal synapses of Aplysia siphon sensory neurons (SNs). The long soma-synapse distances (2.5 to 3 cm) of the SN distal synapses impose important temporal and mechanistic constraints on long-term facilitation and on intracellular signaling. Excitatory postsynaptic potentials (EPSPs) evoked by SNs in central and peripheral siphon motor neurons were used to assay LTF 24-30 h after various pharmacological treatments. Inhibition of protein synthesis via anisomycin application at either the SN soma or distal synapses blocked the induction of LTF and LTSSF normally produced by synaptic application of the facilitating transmitter serotonin (5-hydroxytryptamine). Further, disruption of axonal transport by application of nocodazole to the isolated siphon nerve completely blocked LTF at distal synapses. These results indicate an essential role for somatic and synaptic protein synthesis and active axonal transport in LTSSF at distal synapses, and raise intriguing questions for current synaptic marking/capture models of synapse specificity and LTF.  相似文献   

5.
Aplysia neurons express several splice variants of apCAM, a member of the Ig superfamily of cell adhesion molecules. The major transmembrane isoform is endocytosed in sensory neurons (SNs) during the early phases of long‐term facilitation (LTF) of SN synapses evoked by serotonin (5‐HT) or in the motor neuron L7 during the early phases of long‐term depression (LTD) of SN synapses evoked by Phe‐Met‐Arg‐Phe‐amide (FMRFa). We used single cell RT‐PCR to evaluate whether expression of mRNAs encoding for different apCAM isoforms in SNs and L7 is regulated during LTF produced by 5‐HT, and LTD produced by FMRFa. Single SNs and L7s express mRNAs encoding for all major isoforms, but the proportion of each isoform expressed differs for the two cells. SN expresses more mRNA encoding for GPI‐linked isoforms, while L7 expresses more mRNA encoding for the major transmembrane isoform. The neuromodulators produced significant changes in the proportional levels of mRNAs encoding for specific apCAM isoforms during the first 4 h after treatments without affecting overall levels of apCAM mRNA. 5‐HT evoked changes that exaggerated cell‐specific differences in isoform expression. FMRFa evoked changes that reduced cell‐specific differences in isoform expression. The effects of the neuromodulators on apCAM mRNA expression were not detected when cells were cultured alone or when SNs were cocultured with another motor cell that failed to induce synapse formation (L11). The results suggest that rapid cell‐specific regulation of splice variant expression may contribute to different forms of long‐term synaptic plasticity. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 152–161, 2000  相似文献   

6.
7.
Serotonin (5-HT) and the neuropeptide Phe-Met-Arg-Phe-amide (FMRFa) modulate synaptic efficacy of sensory neurons (SNs) of Aplysia in opposite directions and for long duration. Both long-term responses require changes in mRNA and protein synthesis. The SN-specific neuropeptide, sensorin A, is a gene product that appears to be increased by 5-HT and decreased by FMRFa. We examined whether changes in sensorin A mRNA levels in the cell body and neurites of SNs accompany long-term facilitation and depression. Both 5-HT and FMRFa evoked rapid changes in sensorin A mRNA levels in the SN cell bodies: an increase with 5-HT and a decrease with FMRFa. Parallel changes in sensorin A mRNA levels in SN neurites were detected 2 h and 4 h later. These rapid changes in mRNA expression and net export required the presence of the appropriate target motor cell L7. The neuromodulators failed to produce changes in mRNA expression or export when SNs were cultured alone or with the inappropriate target cell L11. The changes in mRNA expression were transient because mRNA levels returned to control values 24 h after treatment, while synaptic efficacy remained altered by the respective treatments. These results indicate that two neuromodulators produce distinct, but transient, target-dependent effects on expression and export of a cell-specific mRNA that correlate with changes in synaptic plasticity.  相似文献   

8.
Previous studies indicated that Aplysia sensory neurons (SNs) compete when reestablishing synapses with a motor cell target (1.7) in vitro. The competition is characterized by a cell number-dependent decrease in the efficacy of each connection, an increase in the elimination of SN varicosities, a reduction in the formation of new SN varicosities, and the segregation of varicosities of each SN to restricted portions of the target axons. The changes do not require spike activity, since both the SNs and L7 do not fire spontaneously. Here, we examined whether adding activity to SNs during the early stages of synapse formation with stimuli known to evoke facilitatory responses in stable SN-L7 connections—tetanic stimulation or increase in intracellular cyclic adenosine monophosphate (cAMP)—would modulate the intrinsic segregatory process. Tetanic stimulation to one SN increased synapse efficacy and the number of varicosities of the stimulated SNs while reducing the functional changes by the nonstimulated SNs in the same cultures. An increase in the stability of preexisting varicosities contributed to the overall increase in varicosities evoked by tetanus. The functional changes evoked by tetanus were not expressed when the same tetanic stimulation was also given to the other SN, or when L7 was hyperpolarized during the tetanus to the SN. Raising cAMP levels in one SN increased synapse efficacy and the rate of new varicosity formation by the injected SNs without affecting the development of the connections formed by the noninjected SNs. These results suggest that different forms of presynaptic and postsynaptic activities in neurons can regulate specific aspects of the competitive process associated with the fine-tuning of connections formed by converging presynaptic inputs. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Long-term facilitation (LTF) of Aplysia tail sensory neuron–motorneuron (SN–MN) synapses provides a synaptic correlateof memory for long-term behavioral sensitization of the tail-siphonwithdrawal reflex. LTF can be induced by repeated exposuresof serotonin (5HT) in the isolated pleural-pedal ganglion preparation.In addition, we have shown previously (Sherff and Carew, 1999)that LTF can also be induced by coincident 5HT exposure comprisedof a single 25-min exposure of 5HT at the SN cell body and a5 min pulse of 5HT at the SN-MN synapses. If synaptic 5HT isapplied either 15 min before or after somatic 5HT, LTF is significantlyreduced or is not induced at all. These results show that twoanatomically remote cellular compartments can functionally interactwithin a surprisingly short time period. In this chapter, wediscuss some of the mechanistic implications of this temporalconstraint. We also find that coincident LTF and LTF inducedby repeated pulses of 5HT differ (1) in whether they induceanother temporal phase of facilitation (intermediate-term facilitation,ITF, expressed up to 1.5 hr after 5HT), and (2) in their requirementsfor protein synthesis. The results described both in this paperand in the preceding companion paper show that there are multipleforms of both ITF and LTF that differ in their induction andexpression requirements, and at least in some instances, thedifferent temporal phases of facilitation, and perhaps comparablephases of memory, can be induced independently of each other.  相似文献   

10.
11.
Hu JY  Glickman L  Wu F  Schacher S 《Neuron》2004,43(3):373-385
In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.  相似文献   

12.
Aplysia neurons express several splice variants of apCAM, a member of the Ig superfamily of cell adhesion molecules. The major transmembrane isoform is endocytosed in sensory neurons (SNs) during the early phases of long-term facilitation (LTF) of SN synapses evoked by serotonin (5-HT) or in the motor neuron L7 during the early phases of long-term depression (LTD) of SN synapses evoked by Phe-Met-Arg-Phe-amide (FMRFa). We used single cell RT-PCR to evaluate whether expression of mRNAs encoding for different apCAM isoforms in SNs and L7 is regulated during LTF produced by 5-HT, and LTD produced by FMRFa. Single SNs and L7s express mRNAs encoding for all major isoforms, but the proportion of each isoform expressed differs for the two cells. SN expresses more mRNA encoding for GPI-linked isoforms, while L7 expresses more mRNA encoding for the major transmembrane isoform. The neuromodulators produced significant changes in the proportional levels of mRNAs encoding for specific apCAM isoforms during the first 4 h after treatments without affecting overall levels of apCAM mRNA. 5-HT evoked changes that exaggerated cell-specific differences in isoform expression. FMRFa evoked changes that reduced cell-specific differences in isoform expression. The effects of the neuromodulators on apCAM mRNA expression were not detected when cells were cultured alone or when SNs were cocultured with another motor cell that failed to induce synapse formation (L11). The results suggest that rapid cell-specific regulation of splice variant expression may contribute to different forms of long-term synaptic plasticity.  相似文献   

13.
Serotonin (5HT) induces short-term and long-term synaptic facilitation(STF and LTF, respectively) at sensory neuron to motor neuron(SN-MN) synapses in Aplysia, and these forms of plasticity arethought to contribute to short-term and long-term memory forbehavioral sensitization. Recent evidence in Aplysia has identifieda third phase of synaptic facilitation—intermediate-termfacilitation (ITF)—that is temporally and mechanisticallydistinct from STF and LTF. Here, we review the findings of recentstudies that have examined this unique intermediate-term phaseat molecular, cellular, and behavioral levels. The results indicatethat, at tail SN-MN synapses, multiple forms of ITF can be distinguished;they are induced via distinct mechanisms and use parallel molecularpathways for their expression. Moreover, we have incorporatedthe temporal and molecular features of these different formsof ITF at tail SN-MN synapses into behavioral analyses, andfound that they accurately predict distinct forms of intermediate-termmemory for sensitization of the tail-elicited siphon withdrawalreflex. These findings indicate that different types of experiencesengage distinct molecular pathways in the service of memoryretention over the same time domain.  相似文献   

14.
In this review we present recent evidence implicating second-messenger systems in two forms of long-lasting synaptic change seen at crustacean neuromuscular junctions. Crustacean motor axons are endowed with numerous terminals, each possessing many individual synapses. Some synapses appear to be quiescent or impotent, but can be recruited in response to imposed functional demands. Supernormal impulse activity leads to long-term facilitation (LTF) which persists for many hours. During the persistent phase, additional synapses are physiologically effective, and morphological changes in synapses are seen at the ultrastructural level. Pulsatile application of serotonin, a neuromodulator, also enhances synaptic transmission, but this enhancement declines more rapidly than LTF. Elevation of intraterminal Ca2+ is neither necessary nor sufficient for long-lasting enhancement of transmission, but activation of A-kinase is necessary. LTF is set in motion by an unknown depolarization-dependent mechanism leading to A-kinase activation, whereas serotonin facilitation depends for its initiation on the phosphatidylinositol system. The initial phase of serotonin facilitation may be accounted for by production of inositol triphosphate, whereas the secondary long-lasting phase appears to require participation of both C kinase and A kinase. Neither LTF nor serotonin facilitation requires an intact neuron; both are presynaptic phenomena expressed by the nerve terminals. Brief comparison is made with long-lasting synaptic changes in other systems.  相似文献   

15.
N-Methyl-D-aspartate (NMDA)-type glutamate receptors play important roles at developing synapses and in activity-dependent synaptic plasticity. Recent studies in Aplysia suggest that NMDA-like receptors may contribute to some forms of plasticity of sensorimotor synapses accompanying associative learning. We examined at various times after plating neurons in culture the contribution of NMDA- and alpha-amino-3 hydroxy-5 methyl-4 isoxazole proprionic acid (AMPA)-like glutamate receptors to responses evoked in motor cell L7 either by action potentials in sensory neurons (SNs) or by focal applications of glutamate. We found that (D,L)-2-amino-5-phosphopentoic acid-sensitive receptors contributed significantly to postsynaptic responses in 1-day cultures but contributed little in the same cultures on day 4. By contrast, postsynaptic responses on day 4 increased significantly in amplitude by the addition of functional 6-cyano-7 nitroquinoxaline-2,3-dione- or 1-(4-aminophenyl)-4-methyl-7,8-methylendioxy-5H-2,3-benzodiazepine hydrochloride-sensitive receptors. Receptors with NMDA-like properties are detected on day 1 only at sites on L7 apposed to SN varicosities, and are not detected on L7 cultured alone. The results indicate that changes in expression and distribution of functional receptors on L7 accompany the formation and maturation of SN synapses. Signals from the SN appear to trigger expression and clustering of functional NMDA-like receptors at sites contacted by presynaptic structures capable of transmitter release. With time, functional AMPA-like receptors are added to these sites enhancing synaptic efficacy. The results are consistent with the idea that the expression and sequential clustering of NMDA- and AMPA-type receptors may be essential for the formation and maturation of central synapses.  相似文献   

16.
The time course of the requirement for local protein synthesis in the stabilization of learning-related synaptic growth and the persistence of long-term memory was examined using Aplysia bifurcated sensory neuron-motor neuron cultures. We find that, following repeated pulses of serotonin (5-HT), the local perfusion of emetine, an inhibitor of protein synthesis, or a TAT-AS oligonucleotide directed against ApCPEB blocks long-term facilitation (LTF) at either 24 or 48 hr and leads to a selective retraction of newly formed sensory neuron varicosities induced by 5-HT. By contrast, later inhibition of local protein synthesis, at 72 hr after 5-HT, has no effect on either synaptic growth or LTF. These results define a specific stabilization phase for the storage of long-term memory during which newly formed varicosities are labile and require sustained CPEB-dependent local protein synthesis to acquire the more stable properties of mature varicosities required for the persistence of LTF.  相似文献   

17.
18.
Synaptic connections between the sensory and motor neurons of Aplysia in culture undergo long-term facilitation in response to serotonin (5-HT) and long-term depression in response to FMRFamide. These long-term functional changes are dependent on the synthesis of macromolecules during the period in which the transmitter is applied and are accompanied by structural changes. There is an increase and a decrease, respectively, in the number of sensory neuron varicosities in response to 5-HT and FMRFamide. To determine whether macromolecular synthesis is also required for the structural changes, we examined in parallel the effects of inhibitors of protein (anisomycin) or RNA (actinomycin D) synthesis on the structural and functional changes. We have found that anisomycin and actinomycin D block both the enduring alterations in varicosity number and the long-lasting changes in synaptic potential. These results indicate that macromolecular synthesis is required for expression of the long-lasting structural changes in the sensory cells and that this synthesis is correlated with the long-term functional modulation of sensorimotor synapses.  相似文献   

19.
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 ( Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.  相似文献   

20.
Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia[1-3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia[5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin resulting from 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号